Active control of multimodal tonal noise propagated in circular duct with axial subsonic mean flow up to M=0.3

M. Glesser, E. Friot, M. Winninger, C. Pinhède A. Roure

LMA, CNRS UPR-7051, France glesser@lma.cnrs-mrs.fr

Acoustics 2008, Paris

Motivations 00	Materials and methods	Results and discussion	Conclusion o
Outline			

2 Materials and methods

3 Results and discussion

- No flow, multimodal
- In flow, planar mode

Motivations	Materials and methods	Results and discussion	Conclusion o

2 Materials and methods

Results and discussion No flow, multimodal
 In flow, planar mode

4 Conclusion

Motivations	Materials and methods	Results and discussion	Conclusion
•0			

Motivations Active noise control of aircraft engine noise: possible or not ?

 Multimodal tonal noise propagating in circular ducts in the presence of a mean flow

Motivations	Materials and methods	Results and discussion	Co
•0			

Motivations Active noise control of aircraft engine noise: possible or not ?

 Multimodal tonal noise propagating in circular ducts in the presence of a mean flow

Figure: Tonal noise attenuation due to the control as a function of the flow velocity, for a 2450 Hz pure tone (6 modes).

Motivations	
••	

Materials and methods

Results and discussion

Motivations Active noise control of aircraft engine noise: possible or not ?

 Multimodal tonal noise propagating in circular ducts in the presence of a mean flow

Observation

6 modes, $M = 0.3 \Rightarrow$ control system inefficient

Figure: Tonal noise attenuation due to the control as a function of the flow velocity, for a 2450 Hz pure tone (6 modes).

Motivations	s
00	

Materials and methods

Results and discussion

Conclusion o

Motivations French research project CoMBE (Contrôle et Métrologie du Bruit en Ecoulement)

LEA, flow metrology (microphone array, LDA)

LAUM, flow metrology (microphone array)

Motivations o
• Materials and methods

Results and discussion

Conclusion o

Motivations French research project CoMBE (Contrôle et Métrologie du Bruit en Ecoulement)

LEA, flow metrology (microphone array, LDA)

LAUM, flow metrology (microphone array)

LMFA, hybrid passive/active absorbers

ONERA, active control of the acoustic intensity

LMA, active control

Motivations ○● Materials and methods

Results and discussion

Conclusion o

Motivations French research project CoMBE (Contrôle et Métrologie du Bruit en Ecoulement)

LEA, flow metrology (microphone array, LDA)

LAUM, flow metrology (microphone array)

LMFA, hybrid passive/active absorbers

ONERA, active control of the acoustic intensity

LMA, active control

FNRAE, funding

Motivations	Materials and methods	Results and discussion	Conclusion o
Dian			


```
2 Materials and methods
```

Results and discussion
 No flow, multimodal
 In flow, planar mode

Conclusion

Motivations	Materials and methods	Results and discussion	Conclusion o
Materials and Setup	Imethods		

Motivations 00	Materials and methods ●○○	Results and discussion	Conclusion o
Materials an Setup	nd methods		

- 0 < *u* < 100 m/s
- 0 < *M* < 0.3
- Duct: 10 mm-thick, diameter of 176 mm

Motivations 00	Materials and methods	Results and discussion	Conclusion o
Materials an Setup	nd methods		

- 0 < *u* < 100 m/s
- 0 < *M* < 0.3
- Duct: 10 mm-thick, diameter of 176 mm

Motivations	Materials and methods	Results and discussion	Conclusion
00	●00		o
Materials an	d methods		

- 0 < *u* < 100 m/s
- 0 < *M* < 0.3
- Duct: 10 mm-thick, diameter of 176 mm

Motivations	Materials and methods ●○○	Results and discussion	Conclusion o
Materials ar	nd methods		

- 0 < *u* < 100 m/s
- 0 < *M* < 0.3
- Duct: 10 mm-thick, diameter of 176 mm

Motivations	Materials and methods ○●○	Results and discussion	Conclusion o
Materials and m Primary source	ethods		

Motivations	Materials and methods	Results and discussion	Conclusion
00	○●○		o
Materials and m	ethode		

Materials and methods Primary source

125 dB at 800 Hz
105 dB at 2450 Hz

Motivations	Materials and methods	Results and discussion	Conclusion o

Materials and methods Control section

Motiv	/ations

Materials and methods

Results and discussion

Conclusion o

Materials and methods Control section

• $\mathbf{W}(n+1) = \mathbf{W}(n) - \beta [\mathbf{H} * x(n)]^T \mathbf{e}(n)$

Motivations	Materials and methods	Results and discussion	Conclusion o
Plan			

Motivations

Materials and methods

3 Results and discussion

- No flow, multimodal
- In flow, planar mode

Conclusion

No flow, mult	timodal		
No flow, multimodal			
Motivations	Materials and methods	Results and discussion ●○○○	Conclusion o

00	000	●000	0
No flow, mul	timodal		

• Up to *f* = 1500*Hz* : optimal performances

Motivations	Materials and methods	Results and discussion ●○○○	Conclusion o
No flow, multimodal			
No flow, multi	modal		

- Up to *f* = 1500*Hz* : optimal performances
- From *f* = 1500*Hz* : decrease of the performances

Motivations	Materials and methods	Results and discussion ●ooo	Conclusion o
No flow, multimodal			
No flow, mult	imodal		

- Up to *f* = 1500*Hz* : optimal performances
- From *f* = 1500*Hz* : decrease of the performances

No flow, multimodal		
No flow, multimodal		
Motivations Materials and methods	Results and discussion ●○○○	Conclusion o

- Up to *f* = 1500*Hz* : optimal performances
- From *f* = 1500*Hz* : decrease of the performances

Limiting factor

The poor conditioning of the secondary transfer matrix is responsible for the decrease in the ANC performances

Motivations	Materials and methods	Results and discussion ○●○○	Conclusion o
No flow, multimodal			
No flow, mu	Itimodal		

Figure: The convergence of the sum of squared error signals, normalised by the sum of squared primary disturbances, together with the individual 'modes' of convergence, for a steepest descent control system operating with 16 loudspeakers and 32 microphones in a small enclosure (after Elliott et al. 1992)

Motivations	Materials and methods	Results and discussion ○○●○	Conclusion o
In flow, planar mode			
In flow, play	nar mode		

← Single-channel control of 800 Hz tonal disturbances

Motivations 00	Materials and methods	Results and discussion ○○●○	Conclusion o
In flow, planar mode			
In flow, plai	har mode		

← Single-channel control of 800 Hz tonal disturbances

 Decrease of the control performances in presence of flow

Motivations	Materials and methods	Results and discussion ○○○●	Conclusion o
In flow, planar mode			
In flow, plai	nar mode		

$$\gamma_{ex}(\omega_0) = \frac{\left|\left\{\overline{E_m(\omega_0)}X_m(\omega_0)\right\}_m\right|^2}{\left\{|E_m(\omega_0)|^2\right\}_m \cdot \left\{|X_m(\omega_0)|^2\right\}_m}$$

In flow, plana	r mode		
In flow, planar mode			
Motivations	Materials and methods	Results and discussion ○○○●	Conclusion o

$$\gamma_{ex}(\omega_0) = \frac{\left|\left\{\overline{E_m(\omega_0)}X_m(\omega_0)\right\}_m\right|^2}{\left\{|E_m(\omega_0)|^2\right\}_m \cdot \left\{|X_m(\omega_0)|^2\right\}_m}$$

Motivations 00	Materials and methods	Results and discussion ○○○●	O	
In flow, planar mode				
in flow, pla	nar mode			

$$\gamma_{ex}(\omega_0) = \frac{\left|\left\{\overline{E_m(\omega_0)}X_m(\omega_0)\right\}_m\right|^2}{\left\{|E_m(\omega_0)|^2\right\}_m \cdot \left\{|X_m(\omega_0)|^2\right\}_m}$$

• Short time scales: decrease of the coherence

Motivations 00	Materials and methods	Results and discussion ○○○●	O	
In flow, planar mode				
in flow, pla	nar mode			

$$\gamma_{ex}(\omega_0) = \frac{\left|\left\{\overline{E_m(\omega_0)}X_m(\omega_0)\right\}_m\right|^2}{\left\{|E_m(\omega_0)|^2\right\}_m \cdot \left\{|X_m(\omega_0)|^2\right\}_m}$$

• Short time scales: decrease of the coherence

Limiting factor

Short term instabilities reduce the control efficiency

Motivations	Materials and methods	Results and discussion	\circ
Dlan			

Motivations

- 2 Materials and methods
- **Results and discussion** No flow, multimodal
 In flow, planar mode

Motivations	Materials and methods	Results and discussion	Conclusion •
Conclusion			

 Before the study: disappointing control results obtained in reduced scale turbine

- Before the study: disappointing control results obtained in reduced scale turbine
- After the study: two limiting factors are identified
 - Secondary transfer matrix conditioning
 - Short term instabilities due to the turbulence

- Before the study: disappointing control results obtained in reduced scale turbine
- After the study: two limiting factors are identified
 - Secondary transfer matrix conditioning
 - Short term instabilities due to the turbulence

Future work

- Resolve conditioning problems by using diagonalized control algorithm
- Combine flow metrology with simple noise control models in order to reach a better understanding of the performances limitations due to the flow

Active control of multimodal tonal noise propagated in circular duct with axial subsonic mean flow up to M=0.3

M. Glesser, E. Friot, M. Winninger, C. Pinhède A. Roure

LMA, CNRS UPR-7051, France glesser@lma.cnrs-mrs.fr

Acoustics 2008, Paris