


**CLASSE** A de rendement énergétique

Water-cooled liquid chillers and heat pumps

(Cooling capacity 356 - 1225 kW, heating capacity 400 - 1371 kW, screw compressors) Energy efficiency CLASS A

R134a 50Hz

Conditioning your ambient, maximising your comfort.



Cooling, conditioning, purifying.









Conditioning your ambient, maximising your comfort.



MTA est certifié ISO9001, un signe de donner complète satisfaction à ses clients.

MTA is ISO9001 certified, a sign of its commitment to complete customer satisfaction.



Les produits MTA sont en conformité avec toutes les directives de sécurité Européenne, reconnues par le symbole CE.

MTA products comply with European safety directives, as recognised by the CE symbol.



MTA participe au programme de certification Eurovent. Les gammes de produits certifiées sont listées sur www.eurovent-certification.com. Eurovent ne prévoit la certification des unités d'évaporation.

MTA partecipates in the EUROVENT certification programme. Certified products are listed on www.eurovent-certification.com. Eurovent does not foresee certification for condenserless units.

### **AQUARIUS**plus

|    | Spécifications techniques                                                  |
|----|----------------------------------------------------------------------------|
| 2  | Technical specifications                                                   |
|    | Guide de sélection                                                         |
| 10 | Selection guide                                                            |
|    | Performances et données techniques                                         |
| 12 | Performance and technical data                                             |
|    | Limites de fonctionnement, coefficients de correction, sélections soupapes |
| 50 | Working limits, correction factors, valve selection                        |
|    | Perte de charge                                                            |
| 52 | Pressure drops                                                             |
|    | Plans d'encombrement                                                       |
| 53 | Overall dimensions                                                         |
|    | Guide d'installation                                                       |
| 56 | Installation guide                                                         |

### SPÉCIFICATIONS TECHNIQUES - TECHNICAL SPECIFICATIONS

- 1. Généralités
- 2. Configurations acoustiques et versions
- 3. Sigle
- 4. Essai
- 5. Compresseurs
- 6. Évaporateur
- 7- Condenseurs
- 8. Circuit frigorifique
- 9. Châssis et carrosserie
- 10. Armoire électrique
- 11. Régulateur
- 12. Options, kits et exécutions spéciales

### 1. General

- 2. Acoustic configurations
- 3. Nameplate
- 4. Testing
- 5. Compressors
- 6. Evaporator
- 7. Condenser
- 8. Cooling circuit
- 9. Structure and casing
- 10. Electrical panel
- 11. Control
- 12. Options, kits and special designs

### 1. Généralités

Les refroidisseurs de liquide et les pompes à chaleur avec réversibilité sur le côté hydraulique, de la série Aquarius Plus sont des unités monobloc à condensation par eau avec échangeur à faisceau tubulaire. Le choix soigneux des composants permet à toute la série Aquarius Plus d'être placée en « Classe A" de rendement énergétique conformément à la EECCAC (Energy Efficiency and Certification of Central Air Conditioners).

Chaque unité de la série Aquarius Plus utilise un évaporateur à faisceau tubulaire à détente directe, avec un circuit frigorifique pour chaque compresseur et un seul circuit eau, un ou deux compresseurs semi-hermétiques à double vis et réglage continu de la capacité frigorifique, qui se trouvent sur des circuits frigorifiques indépendants et des détendeurs thermostatiques électroniques standard (en option sur les modèles double circuit du 1402 au 2002). Ces solutions permettent d'améliorer les valeurs de rendement énergétique à charge réduite qui représentent la partie principale de la durée opérationnelle d'une machine de climatisation, en poussant au maximum les indices de performance saisonnière ESEER(\*) et IPLV (\*). La gestion est confiée à un régulateur à microprocesseur qui gère, de manière complètement autonome, toutes les fonctions principales dont, les réglages, les alarmes et l'interface avec l'extérieur. Elles sont généralement installées dans des locaux à l'abri mais également conçues pour l'utilisation à l'extérieur (IP44). Le fluide frigorigène utilisé est le l'R134a.

Toutes les machines sont conçues, produites et contrôlées conformément aux normes ISO 9001, avec des composants de grandes marques.

Le produit standard, destiné aux pays CEE et EFTA, est soumis à :

- Directive Compatibilité Électromagnétique 2004/108/CE ;
- Directive Machines 2006/95/CE;
- Directive Basse Tension 2006/95/CE;
- Appareillages sous pression 97/23/CE.

Le tableau électrique est réalisé conformément aux normes CEI EN 60204-1.

Toutes les données indiquées dans ce catalogue se réfèrent à des machines standard et à des conditions nominales de fonctionnement (sauf spécification différente).

(\*) Les indices de performance saisonnière ESEER (European Seasonal Energy Efficiency Ratio), proposés et utilisés dans le contexte de projet européen et la VIPC (Valeur Intégrée à Charge Partielle), proposée par le Standard ARI américain, caractérisent le rendement moyen pondéré d'un refroidisseur frigorifique destiné à la climatisation. Ces indices expriment, bien mieux que le EER, le rapport entre l'effet utile (énergie totale soustraite aux lieux) et la dépense énergétique (énergie électrique consommée), propres d'une machine frigorifique pendant toute la saison de fonctionnement. En fonction des différentes conditions opérationnelles et de leur fréquence, ces indicateurs sont calculés en attribuant un poids énergétique différent aux performances correspondantes de l'unité. Par exemple ESEER = 6 signifie que durant toute la saison de fonctionnement, il faudra utiliser en moyenne 1 kWh d'énergie électrique tous les 6 kWh thermiques soustraits aux lieux à rafraîchir.

### 1. General

The Aquarius Plus series of chillers and heat pumps with reversible facility on the hydraulic side are water cooled packaged units equipped with shell and tube exchangers. The careful choice of components places the entire Aquarius Plus series in energy efficiency "Class A" in compliance with EECCAC (Energy Efficiency and Certification of Central Air Conditioners).

Each unit from the Aquarius Plus series uses a dry expansion type evaporator with a refrigerant circuit for each compressor and a single water circuit, one or two semi-hermetic dual screw compressors and continuous control of cooling capacity serving independent refrigerant circuits, and electronic thermostatic valves as standard (optional only on dual circuit models from 1402 to 2002). These solutions make it possible to enhance energy efficiency at low loads, which account for the largest portion of the working life of an air conditioning unit, maximising ESEER(\*) and IPLV(\*) seasonal performance indices.

The units are equipped with a microprocessor controller that offers fully independent management of all the main functions, including adjustments, alarms and interface with the periphery. Installation is usually indoors, although the units are also suitable for outdoor installation (IP44). The units use R134a refrigerant. All units are designed, built and checked in compliance with ISO 9001, using components sourced from premium manufacturers.

The standard product, destined for EU and EFTA countries, is subject to the following directives:

- Electromagnetic Compatibility Directive 2004/108/EC;
- Machinery 2006/42/EC;
- Low Voltage Directive 2006/95/EC;
- Pressure Equipment Directive 97/23/EC.

The electrical cabinet is constructed in compliance with EN 60204-1.

All data within this documet refers to standard units and nominal operating conditions (unless otherwise specified).

(\*) The indices ESEER (European Seasonal Energy Efficiency Ratio) proposed and used in the European design context, and IPLV (Integrated Part Load Value) proposed by US Standard ARI, characterise the average weighted efficiency of a chiller. Both indices express, far more accurately than EER, the ratio between the useful effect (energy removed from interior spaces) and energy expenditure (electrical energy consumed) of a industrial chiller during the course of the entire operating season. In relation to the various different operating conditions and the frequency with which they occur, these indicators are calculated by assigning a different energy weight to the corresponding output values of the unit.

For example ESEER = 6 means that during an entire season of operation 1 kWh of electrical power is required on average to remove 6 kWh of heat energy from the air conditioned spaces.

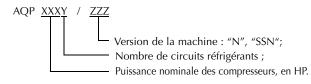
Charge thermique *Thermal load percentage* 

### 2. Configurations acoustiques et versions

Toute la série Aquarius Plus est disponible en deux configurations acoustiques :

"N" - Configuration acoustique de Base : compresseurs directement accessibles de l'extérieur ;

"SSN" – Configuration acoustique Super-Silencieuse optimisée pour un fonctionnement particulièrement silencieux : compresseurs placés dans une carrosserie métallique insonorisée à l'aide de caoutchouc mousse expansé à cellules ouvertes, absorbant acoustique et une feuille insonorisante.

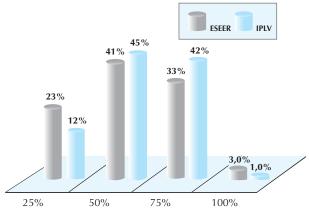

Toutes les unités de la série Aquarius Plus peuvent fonctionner en tant que pompe à chaleur avec inversion côté hydraulique. Au moment de l'installation il sera nécessaire de réaliser le circuit pour l'inversion hydraulique et le positionnement de la sonde de thermorégulation hivernale, toujours fournie et câblée, dans un doigt de gant sur la tuyauterie de sortie du condenseur (en aval du collecteur de raccordement dans les unités à double condenseur).



configuration acoustique "N" - "N" acoustic configuration

### 3. Sigle

Chaque refroidisseur est identifié par le sigle :




### 4. Essai

Chaque machine produite, est essayée en cabine de contrôle pour évaluer son fonctionnement correct, aussi bien dans les conditions de fonctionnement les plus significatives, que dans les plus lourdes, en particulier :

• vérification du montage correct de tous les composants et de l'absence de fuites de fluide réfrigérant ;

### Poids énergétiques selon ESEER et VIPC ESEER and IPLV energy weights



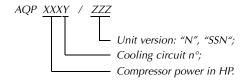
Charge thermique Thermal load percentage

### 2. Acoustic configurations and versions

The entire Aquarius Plus series is available in two acoustic configurations:

"N" - Basic acoustic configuration: compressors directly accessible from the exterior;

"SSN" – Super silent acoustic configuration optimised for very low noise operation: compressors housed in a metal compartment insulated with a sound absorbing layer of open-cell expanded polyurethane and a sheet of sound deadening material.


All Aquarius Plus series units can function as heat pumps with cycle inversion on the hydraulic side. When installing the unit the circuit for hydraulic reversal must be created and the winter temperature control probe (always supplied and pre-wired) must be positioned in a socket on the condenser outlet pipe (down-line from the connecting manifold in dual condenser units).



configuration acoustique "SSN" - "SSN" acoustic configuration

### 3. Nameplate

Every chiller can be identified by its nameplate:



### 4. Testing

Each unit is tested in a test chamber in order to check correct operation both in the most representative operating conditions and in the most demanding conditions. The following aspects are checked in particular:

• correct installation of all components and possible refrigerant





- les tests de sécurité électriques sont effectués conformément aux prescriptions de la EN60335-2-40;
- vérification du fonctionnement correct du régulateur à microprocesseur et de la valeur de tous les paramètres de service;
- vérification des sondes de température et des transducteurs de pression ;
- en fonctionnement aux conditions nominales on vérifie: l'étalonnage du détendeur thermostatique, la charge de fluide frigorigène, les températures d'évaporation et de condensation, la surchauffe et le sous-refroidissement et la puissance frigorifique utile.

À l'installation, les machines ne nécessitent que des connexions électriques et hydrauliques ce qui garantit un niveau de fiabilité élevé.

### 5. Compresseurs

Les compresseurs utilisés sont de type semi-hermétique à double vis (rotor mâle à cinq lobes et rotor femelle à six alvéoles) expressément conçus pour le réfrigérant R134a; le dimensionnement correct des vis ainsi que les caractéristiques physiques et chimiques du réfrigérant, permettent d'obtenir des rendements isentropiques de compression supérieurs à ceux d'un compresseur à vis correspondant pour le réfrigérantR407C. Le réglage continu de la capacité frigorifique, ainsi que l'utilisation d'un ou de deux compresseurs qui se trouvent sur des circuits frigorifiques indépendants, permet :

- la distribution exacte de la puissance frigorifique demandée par l'installation :
- d'atteindre des indices de performance aux charges partielles élevés, qui constituent la majeure partie de la vie opérationnelle d'une machine conçue pour la climatisation;
- d'atteindre les niveaux minimums de réduction par étages de puissance jusqu'à 50% de la charge nominale dans les unités à un compresseur et jusqu'à 25% dans les unités à deux compresseurs;
- et garantit en outre un niveau de fiabilité élevé indispensable dans les installations de grande puissance.

La réduction par étages de puissance, à l'aide de la fonction de délestage permet de faire démarrer l'installation et de faire marcher la machine, même en conditions très différentes des conditions nominales.

Chaque compresseur est muni de résistance de carter chauffante à l'arrêt de celui-ci, d'indicateur de niveau d'huile et de flotteur de sécurité, de vannes d'aspiration et de refoulement, de clapet anti-retour qui empêche aussi bien les éventuels retours de liquide dans les vis que la rotation inverse de celles-ci au moment de l'extinction du compresseur.

La lubrification des parties mécaniques est forcée, sans pompe à l'huile, et grâce à un séparateur à efficacité élevée intégré qui empêche la sortie vers le circuit.

L'accouplement direct de la vis mâle à un moteur électrique à deux pôles permet d'évacuer le gaz de manière pratiquement continue (presque 250 évacuations par seconde) en réduisant les vibrations et améliorant les performances sonores de la machine durant le fonctionnement normal. Les enroulements du moteur électrique sont refroidis par le gaz aspiré par le compresseur et protégés contre les éventuelles surchauffes par un module électronique interne ; ce même module contrôle aussi la séquence des phases pour éviter le danger de rotation inverse. Les courants de démarrage sont modérés par le démarrage à vide, avec différentiel de pression nul, par le niveau minimum de réduction par étages de puissance et par le double enroulement « part-winding » (modèle 1401 et modèles double circuit du 1402 au 2802) et séquence de connexion étoile-triangle pour les modèles restants.

Les compresseurs sont parfaitement accessibles pour les opérations courantes de maintenance ordinaire, ou pour une éventuelle intervention de remplacement et sont montés dans la partie supérieure de la machine sur des supports en acier d'épaisseur appropriée.

### 6. Évaporateur

L'évaporateur est du type à faisceau tubulaire à détente directe à un ou deux circuits frigorifiques indépendants et un circuit d'eau. Les évaporateurs utilisés dans la série Aquarius Plus sont expressément conçus pour l'utilisation du réfrigérant R134a et sont constitués par un faisceau de tubes en cuivre en forme de « U », dudgeonnés aux

leaks;

- electrical safety tests performed as prescribed by EN60335-2-40;
- correct operation of the microprocessor controller together with the values of all operating parameters;
- temperature probes and pressure transducers;
- operation is forced at nominal conditions in order to check: thermostatic valve calibration, refrigerant charge, evaporation and condensing temperatures, superheating and subcooling and cooling duty values.

At the time of installation the units require exclusively electrical and hydraulic connection, thus ensuring a high level of reliability.

### 5. Compressors

The units are equipped with semi-hermetic dual screw compressors (male rotor with five lobes and female rotor with six valleys) expressly developed for use with R134a; correct sizing of the screws together with the physical and chemical properties of the refrigerant make it possible to achieve isoentropic compression efficiency levels that are higher than those of a corresponding screw compressor for R407C refrigerant. Stepless capacity control combined with the use of one or two compressors serving independent refrigerant circuits, allows:

- delivery of exactly the cooling capacity requested by the installation;
- attainment of superior EER levels at partial loads, which account for the largest portion of the working life of an air conditioning unit;
- arrival at minimum capacity values of down to 50% of the nominal load in single-compressor units and down to 25% in dual-compressor units;
- guaranteed high level of reliability essential in high capacity installations.

Capacity control, by means of the unloading function, allows system start-up and operation of the unit also with parameters that are significantly different from nominal conditions.

Each compressor is equipped with a crankcase heater that cuts in when the compressor is stopped, oil level gauge and safety float, suction and discharge shut-off valves, check valve that prevents liquid from returning to the screws and reverse rotation of the screws at the time of compressor stopping.

Lubrication of mechanical parts is forced, without an oil pump, while a built-in high-efficiency separator prevents the oil from contaminating the refrigerant circuits.

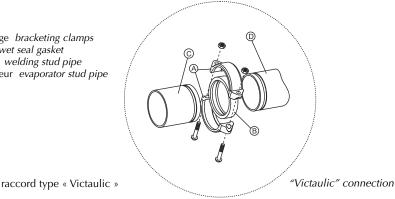
Direct coupling of the male screw to a two-pole motor makes it possible to discharge refrigerant almost continuously (almost 250 shots per second) thus reducing vibration and improving sound emission performance of the unit during normal operation.

The motor windings are cooled by the gas drawn in by the compressor and protected against overheating by an internal electronic module; the same module also controls the phase sequence to eliminate the risk of reverse rotation. Peak current is limited by start-up in no-load conditions with zero pressure differential, by the minimum capacity control level and by the use of "part-winding" technology (model 1401 and dual circuit models from 1402 to 2802) and by star-delta connection sequence for remaining models.

The compressors are easily accessible for routine maintenance and, if necessary, any replacement operations, and are installed in the top part of the unit on heavy gauge steel cradles.

### 6. Evaporator

The evaporator is of the dry expansion shell and tube type with one or two independent refrigerant circuits and a single water circuit. The evaporators in the Aquarius Plus series are specifically designed for use with R134a and are composed of a bundle of copper tubes formed in a "U" shape, mechanically expanded at the ends into a tube plate


extrémités à une plaque tubulaire et disposés à l'intérieur d'un manteau en acier au carbone. Le fluide frigorigène circule à l'intérieur des tubes en cuivre, ondulés pour augmenter leur efficacité, tandis que l'eau, orientée par des diaphragmes, circule à l'extérieur des tubes.

Chaque évaporateur est isolé à l'extérieur par un isolant thermique et anticondensat à finition noire en polyéthylène et est protégé contre le risque de gel, causé par de basses températures d'évaporation éventuelles, grâce à la fonction antigel de l'unité électronique qui règle la température de sortie de l'eau. En outre sur chaque évaporateur sont montés un pressostat différentiel de l'eau qui le protège contre l'absence de flux, un purgeur d'air manuel dans la partie plus haute et le robinet de vidange dans la partie plus basse. Les raccordements de l'eau sont munis de raccords de type « Victaulic », avec manchon et sont facilement accessibles de l'extérieur de la machine.

and housed inside a carbon steel shell. The refrigerant flows inside the copper tubes, which are ribbed to increase the exchange efficiency, whilst the water, which is oriented by baffles, flows over the outside of the tubes.

Each evaporator is externally protected with thermal insulation material and anti-condensation cladding with polyethylene black finish, and protected from the risk of freezing potentially caused by low evaporation temperatures by the antifreeze function incorporated in the electronic controller, which monitors the water outlet temperature. In addition, each evaporator is equipped with a water differential pressure switch to protect it in conditions in which the water flow is absent or insufficient, a manual air bleed valve on the top and a drain valve at the bottom. The water connections are equipped with "Victualic" unions complete with stub pipe and are easily accessible from the exterior of the unit.

A: mâchoires de serrage bracketing clamps B: joint d'étanchéité wet seal gasket C: manchon à souder welding stud pipe D: manchon évaporateur evaporator stud pipe



Tous les évaporateurs sont conformes à la norme « CE » concernant les récipients sous pression et peuvent traiter des solutions antigel et, en général, d'autres liquides qui sont compatibles avec les matériaux qui constituent le circuit hydraulique.

### 7. Condenseurs

Les condenseurs, un pour chaque circuit, sont du type à faisceau tubulaire et sont optimisés pour l'utilisation du réfrigérant R134a. Ils sont constitués par un faisceau de tubes en cuivre, dans lequel circule l'eau, placé dans un manteau en acier au carbone à l'intérieur duquel s'effectue la condensation. Les têtes en fonte du manteau portent les raccords filetés pour les tuyauteries hydrauliques et peuvent être démontés pour permettre l'inspection et le nettoyage interne des tubes ; ceux-ci sont ondulés du côté eau, pour augmenter le rendement de l'échange thermique et se développent sur 2 ou 4 passages, selon l'exécution, qui devra être spécifiée en phase de commande, respectivement pour eau de tour ou eau de puits. L'installateur se chargera de placer un filtre à l'entrée de la machine pour intercepter les impuretés éventuelles. Si l'on prévoit une utilisation d'eau, à l'entré des condenseurs, inférieure à celle qui est spécifiée dans les limites de fonctionnement pour le type d'installation concerné (eau de puits ou de tour), il faut prévoir l'emploi de vannes pressostatiques.

Tous les condenseurs utilisés sont conformes à la norme « CE » concernant les récipients sous pression et peuvent traiter des solutions antigel et, en général, d'autres liquides qui sont compatibles avec les matériaux qui constituent le circuit hydraulique.

L'utilisateur se chargera du raccordement côté eau des unités à double circuit ainsi que, dans l'utilisation de l'unité comme pompe à chaleur, du positionnement de la sonde de thermo-régulation hivernale (toujours fournie déjà câblée au contrôle) dans un doigt de gant sur la tuyauterie de sortie du condenseur (en aval du collecteur de raccordement dans les unités à double condenseur).

### 8. Circuit frigorifique

Chaque circuit frigorifique dans sa configuration standard est composé comme suit:

• double série de pressostats pour la régulation de la pression maximum de condensation comme prévu par les normes européennes de All the evaporators comply with the "EC" pressure vessels directive and can handle antifreeze solutions and, in general, all other liquids that are compatible with the hydraulic circuit construction materials.

### 7. Condensers

The condensers, one for each refrigerant circuit, are of the shell and tube type and are optimised for the use of R134a refrigerant. The exchangers are composed of a bundle of copper tubes (inside which water flows), housed inside a carbon steel shell, in which condensation occurs. The cast iron headers of the shell carry the threaded connections for the hydraulic pipes and are removable in order to allow inspection and internal cleaning of the tubes; the tubes are finned on the water side to enhance thermal exchange efficiency and are arranged in 2 or 4 rows depending on whether they are designed for use with tower water or well water, according to the specification made at the time of the order. Installers are required to fit a filter on the unit inlet line to intercept any debris. If the installation involves the use of water at the inlet to the condensers outside the values specified for the operating limits for the type of plant (well or tower water), pressure control valves must be fitted.

All condensers comply with the "EC" pressure vessels directive and can handle antifreeze solutions and, in general, all other liquids that are compatible with the hydraulic circuit construction materials.

The user is responsible for interconnection on the water side of dual circuit units and, when the unit is to be used as a heat pump, positioning of the winter temperature control probe (always supplied pre-wired to the controller) in a socket on the condenser outlet pipe (down-line from the connecting manifold in dual condenser units).

### 8. Refrigerant circuit

Each refrigerant circuit is completed as follows in the standard configuration:

 double set of pressure switches for control of maximum condensing pressure as envisaged by the European reference standards

référence (EN378);

- transducteur de haute pression: pour la fonction de délestage, pour la gestion de l'alarme, pour la lecture et la visualisation - à l'aide du régulateur - de la pression dans la branche correspondante et pour le réglage de la pression de condensation par vanne modulante servocommandée (en option);
- soupapes de sécurité sur les circuits de haute et basse pression (comme prévu par les EN378);
- vanne d'isolement du réfrigérant sur la ligne du liquide ;
- filtre déshydrateur ;
- voyant liquide;
- électrovanne sur la ligne liquide;
- détendeur thermostatique électronique dans tous les modèles à un circuit et dans les modèles à double circuit à partir de 2002. Il permet d'améliorer les performances frigorifiques dans une plage de fonctionnement beaucoup plus étendue que celle des détendeurs thermostatiques mécaniques, soit en optimisant et réduisant la valeur de surchauffe du gaz en aspiration au compresseur, soit en réduisant les fluctuations de la température de l'eau causées par de brusques variations de la charge thermique;
- détenteur thermostatique à égalisation externe dans les modèles double circuit du 1402 au 1802;
- transducteur de basse pression : pour la gestion de l'alarme, pour la lecture et la visualisation par contrôle de la pression dans la branche correspondante;
- huile antigel et charge de réfrigérant.

Tous les brasages pour les raccordements des divers composants sont effectués avec un alliage d'argent et les tuyauteries froides sont revêtues de matériau thermoisolant pour éviter la formation de condensat.

### 9. Châssis et carrosserie

Toute la base, les supports des échangeurs, les longerons d'appui des compresseurs et les carrosseries sont réalisés en tôle d'acier au carbone galvanisée, soumise à un traitement de phosphodégraissage, et laquée au four à 180°C avec des poudres polyesters qui confèrent une grande résistance aux agents atmosphériques.

La couleur de la structure est gris clair RAL 7035P à effet moucheté (bases avec finition lisse) les longerons sont bleu RAL 5013P à effet moucheté. La structure est conçue pour accéder facilement à tous les composants et l'union des différentes parties est réalisée avec des rivets et des vis en acier galvanisé, tandis que les panneaux amovibles sont fixés par des vis métriques.

Pour les modèles à 2 compresseurs, la structure de support a été réalisée de manière à permettre l'extraction des condenseurs en cas de maintenance extraordinaire.

Les unités sont munies de barres pour le levage et la manutention à l'aide de courroies.

### 10. Armoire électrique

L'unité et l'armoire électrique sont réalisées conformément à la norme CEI EN60204-1 (Sécurité des machines - Équipement électrique des machines - 1e Partie : règles générales) ; en particulier, la protection contre les agents atmosphériques, nécessaire pour l'installation des refroidisseurs à l'extérieur à l'abri d'un toit, est assurée. L'armoire électrique, munie de ventilation forcée, est équipée d'un sectionneur général avec dispositif de verrouillage de porte et contient les contacteurs des circuits compresseurs, les fusibles pour la protection des compresseurs (modèles 1401 et du 1402 au 2802), des disjoncteurs automatiques pour la protection des compresseurs (modèle à un circuit du 1601 au 2401 et à double circuit du 3202 au 4802).

La protection thermique des moteurs des compresseurs est garantie par leurs dispositifs intégrés respectifs ; la protection thermique de chaque enroulement de compresseur avec démarrage à enroulement partiel « partwinding » est en outre garantie par un dispositif de protection installé en amont de chaque enroulement. Sur toutes les unités le dispositif de contrôle de phases (relai de tension maximum/minium (+/- 10%), absence et contrôle de séquence des phases) est monté de série ; La section de contrôle comprend le transformateur pour l'alimentation des auxiliaires et les cartes à microprocesseur. On prévoit aussi le prééquipement électrique pour l'éventuelle installation d'un contrôleur de débit

(EN378);

- high pressure transducer: for the unloading function, alarm management, reading and display, on the controller, of pressure in the corresponding branch and for condensing pressure control by means of a servo-driven modulating valve (optional);
- relief valves in low and high pressure circuits (as envisaged by standard EN378);
- refrigerant shut-off valve on the liquid line;
- filter dryer;
- liquid flow sight glass;
- solenoid valve on the liquid line;
- electronic thermostatic valves in single circuit and dual circuit models from 2002. These valves allow improvement of cooling performance in an operating range that is significantly wider than that of mechanical thermostatic valves both by optimising and reducing the superheating value of gas drawn in by the compressor and by reducing water temperature fluctuations caused by constant and sudden changes in the thermal load;
- thermostatic expansion valve with external equalisation in dual circuit models from 1402 to 1802;
- low pressure transducer: for alarm management, reading and display by means of pressure control in the corresponding branch;
- non-freezing oil and refrigerant charge.

All brazing for connections of components is done using silver alloy as the filler metal, while cold sections of the pipes are clad with insulating material to prevent the formation of condensation.

### 9. Structure and casing

The plinth, exchanger cradles, compressor support beams and outer panels are made of galvanized carbon steel sheet subjected to a phosphor degreasing treatment and painted with a polyester powder coating baked-on at 180 °C to provide a durable weatherproof finish.

The frame is in orange-peel light grey RAL 7035P (cradles and plinths with smooth finish), longitudinal members are in orange-peel blue RAL 5013P. The unit frame is designed to ensure easy access to all internal components of the unit, with the various components of the structure assembled by means of rivets and galvanized steel screws, while removable panels are secured by metric screws.

The supporting structure for 2 compressors models is designed to allow the condensers to be extracted for supplementary maintenance requirements.

The units are equipped with bars for lifting and handling using belts.

### 10. Electrical Panel

The unit and the electrical cabinet are made in compliance with CEI EN60204-1 (Safety of machinery – Electrical equipment of machines – Safety Part 1: General rules), in particular, protection against the weather is ensured such as to allow outdoor installation of the chillers protected by a rain shelter.

The electrical panel with forced ventilation is equipped with a main breaker with door lock device and contains the compressor circuits contactors, compressor fuses (models 1401 and from 1402 to 2802), compressor automatic cut-outs (single circuit models from 1601 to 2401 and dual circuit from 3202 to 4802).

Thermal protection of compressor motors is assured by the respective integral protection devices; thermal protection of each compressor winding of compressors with part-winding start-up is further assured by a protection device installed up-line from each winding. All units are equipped as standard with a phase monitor device (minimum/maximum voltage (+/- 10%) relay and phase sequence monitoring). The control section includes the transformer for the control circuit and microprocessor board. The units are also electrically prearranged for connection of a flow switch if required.

### 11. Régulateur

La régulation et la gestion de la machine sont confiés à une unité électronique « Carel pCO³ » qui comprend une carte à microprocesseur pour chaque compresseur et le terminal utilisateur rétroéclairé « pGD1 » ; ce dernier présente un afficheur à 8 lignes avec 22 caractères, 6 poussoirs led pour la programmation de la machine, dont 4 toujours éclairés tandis que les autres (programmation et alarme) le sont en fonction de l'état du régulateur. Le terminal est placé sur la porte de l'armoire électrique et est protégée par un volet ouvrant en polycarbonate.

### 11. Control

Control and management of the unit are provided by a "Carel pCO3" controller which includes one microprocessor board for each compressor and the "pGD1" backlit user terminal; this latter is equipped with an 8-line 22-character display, and 6 LED buttons for unit programming, 4 of which are constantly illuminated while the remaining 2 (programming and alarm) illuminate on the basis of controller status.

The terminal is located on the central panel of the electrical cabinet and is protected by an openable polycarbonate cover.



L'unité électronique gère de manière complètement autonome les fonctions principales suivantes :

- la thermo-régulation de l'eau en sortie de l'évaporateur avec logique à zone neutre et réduction continue par étages de puissance des compresseurs. En alternative, l'utilisateur pourra choisir d'effectuer la thermo-régulation à l'entrée de l'évaporateur, ou bien en aval d'un éventuel ballon-tampon extérieur à la machine (sonde de température à charge de l'utilisateur), soit en conservant la logique à zone neutre, soit en sélectionnant la logique PID avec réduction par étages de puissance (50, 75 et 100% de la puissance pour chaque compresseur);
- la thermo-régulation de l'eau en sortie du condenseur, dans le fonctionnement comme pompe à chaleur, avec logique à zone neutre et réduction continue par étages de puissance des compresseurs.
- cycles d'allumage des compresseurs, temporisation, et, dans les modèles à double circuit, égalisation de leurs temps de fonctionnement et saturation de chaque circuit, pour pousser au maximum les indices de performance, en toutes conditions de fonctionnement;
- délestage qui permet le démarrage de l'installation et le fonctionnement de la machine, même en conditions très différentes des conditions nominales;
- gestion des détendeurs thermostatiques électroniques ;
- gestion du point de consigne : fixe (standard); « compensé » positivement ou négativement en fonction de la température de l'air extérieur (sonde de température à charge de l'utilisateur ; « double » par signal numérique ; « variable par tranches horaires » (4 tranches horaires) programmables dans le temporisateur interne ; « variable par signal analogique » 4÷20 mA;
- marche/arrêt par tranches horaires journalières et/ou hebdomadaires ;
- gestion des vannes modulantes servo-commandées pour la régulation de la pression de condensation (en option) dans les limites requises par les compresseurs;
- contrôle antigel en fonction de la température de sortie de l'eau de l'évaporateur ;
- décompte des heures de fonctionnement de la machine et des différents compresseurs, avec signalisation du dépassement du nombre d'heures programmé pour la maintenance ;
- gestion des messages d'alarme, dont :
  - alarme basse pression évaporation ;
  - alarme haute pression condensation;
  - alarme intervention protections thermiques et panne compresseurs ;
  - alarme d'intervention du pressostat différentiel à cause du manque d'eau à l'évaporateur ;
  - alarme antigel;
- alarmes de haute et basse température entrée et sortie de l'eau ;
- anomalie alimentation électrique tension maximum/minimum (+/-10%) absence et séquence phases.

The controller manages the following functions independently:

- temperature control of water at the evaporator outlet with neutral zone logic and continuous capacity control of the compressors. As an alternative the user can select temperature control at the evaporator inlet or, if present, down-line of an external storage tank (temperature probe to be provided by the user), either maintaining neutral zone logic or selecting PID logic with capacity step control (50, 75 and 100% capacity for each compressor);
- temperature control on water at the condenser outlet, in heat pump mode, with neutral zone logic and continuous capacity control of the compressors;
- compressor start cycles, timing and, in dual-compressor units, equalisation of run times and saturation of each circuit to maximize COP values in all operating conditions;
- unloading function that allows system starting and unit operation also with parameters that differ significantly from nominal conditions;
- management of electronic thermostatic valves;
- set-point management: fixed (standard); "compensated" positively or negatively in accordance with ambient air temperature (temperature probe to be provided by the user); "dual" set by a digital signal; "variable by time bands" (4 time bands) programmable on the internal timer; "variable by analogue signal" 4÷20 mA;
- on/off by daily and/or weekly time bands;
- management of the servo-driven modulating valves (optional) for condensing pressure control within the limits required by the compressors;
- antifreeze control in accordance with the water temperature at the evaporator outlet;
- count of operating hours of the unit and individual compressors with notification when the programmed operating hours before maintenance are exceeded;
- management of alarm messages, including:
  - low evaporation pressure alarm;
- high condensing pressure alarm;
- compressor thermal protections trip and compressors fault alarm;
- differential pressure switch trip alarm due to insufficient water flow to the evaporator;
- antifreeze alarm;
- low and high temperature water inlet and outlet alarms;
- power supply maximum/minimum voltage anomaly (+/-10%) missing and phase sequence.

In addition to alarms, the display can also present the following main information:

- condensing and evaporation pressures of each circuit;
- water inlet and outlet, ambient air temperature probe (install

L'affichage peut montrer, en plus des alarmes, les visualisations principales suivantes ;

- pressions d'évaporation et de condensation de chaque circuit ;
- températures d'entrée et sortie de l'eau, sonde de l'air extérieur (prévoir sonde de température) et décharge compresseurs;
- état des entrées et des sorties numériques ;
- historique alarmes ;
- sélection multilingues (italien, anglais, français, allemand et espagnol).

Un contact sec est en outre disponible pour amener à distance la signalisation d'une alarme générale.

On peut effectuer le raccordement de plusieurs machines en parallèle (jusqu'à 4) par le réseau local pLAN, en programmant sur le régulateur la première unité comme « maître » et les autres comme « esclaves ». L'utilisateur pourra gérer l'ensemble à l'aide du terminal de l'unité maître ou bien à travers le terminal à distance dupliqué (en option). La machine n'est pas prééquipée pour commander la pompe sur le circuit hydraulique de l'évaporateur ; il est néanmoins possible d'introduire la gestion d'une ou deux pompes en parallèle, externes à la machine, dont une en attente. Dans le premier cas le régulateur gèrera les marche/arrêt pompe et l'arrêt de l'unité, avec signalisation d'alarme, en cas de panne ; dans le deuxième cas, le régulateur gèrera l'égalisation des temps de fonctionnement des deux pompes ainsi que l'intervention de la pompe en attente avec signalisation d'alarme en cas de panne de la première. Le régulateur dispose d'une sortie avec signal 0÷10 V pour la commande d'une pompe à variateur à installer dans le circuit hydraulique secondaire d'un système à volume d'eau variable. Pour configurer le fonctionnement du refroidisseur frigorifique dans ces systèmes, veuillez contacter nos bureaux commerciaux avant la commande.

### 12. Options, kits et exécutions spéciales

**Options** (les options doivent être indiquées en phase de commande parce qu'elles sont installées à l'usine) :

- condenseurs pour l'eau de tour ou de puits ;
- détendeurs thermostatiques électroniques dans les modèles à double circuit du 1402 au 1802;
- protection des compresseurs par disjoncteurs automatiques (modèles 1401 et du 1402 au 2802);
- emballage pour envoi par container.

**Kits** (les kits sont des accessoires qui sont fournis en colis séparés, généralement avec l'unité et installés aux soins du client). Ils peuvent également être fournis par la suite en qualité de pièces de rechange, kits de modification, de complément, etc.) :

- Contrôle pressostatique de la condensation par :
- détendeurs pressotatiques à 2 voies pour installations condensées à l'eau de tour :
- détendeurs pressotatiques à 2 voies pour installations condensées à l'eau de puits ;
- vannes modulantes à 3 voies servo-commandées avec signal 0 10V du régulateur de l'unité, pour installation condensées à l'eau de tour ;
- vannes modulantes à 2 voies servo-commandées avec signal 0 10V du régulateur de l'unité, pour installations condensées à l'eau de puits ; Le choix de la vanne est effectuée sur la base du débit d'eau dans chaque condenseur et des pressions différentielles maximums de fermeture et de réglage, pour les vannes modulantes seulement, à l'aide des tableaux « vannes pressostatiques » et « vannes modulantes ». Chaque kit prévoit une seule vanne par condenseur et comprend les contre-brides filetées munies de joints. L'installation des vannes reste à charge du client : bridage, connexions et raccords hydrauliques (le diamètre des raccords filetés pourrait ne pas correspondre au diamètre des raccords au condenseur), connexions frigorifiques (vannes pressostatiques) et électriques (vanne modulantes).
- antivibratiles;
- contrôle à distance simple : composé par un interrupteur marche/ arrêt, un interrupteur de commutation été/hiver, une DEL verte de marche et une LED rouge d'alarme générale, montés sur un boîtier mural en plastique prévu à cet effet, et 3 mètres de câble pour le raccordement à l'unité;

temperature probe) and compressors discharge;

- status of digital inputs and outputs;
- alarms history;
- language selection (Italian, English, French, German, Spanish).

In addition, a voltage-free contact is provided for remotisation of a general alarm signal.

Several units (up to 4) can be connected in parallel on a pLAN local network by setting the first one as "master" unit and the others as "slave" units on the controller. The user can manage the group of units by means of the master unit terminal or by means of the replicated remote control (optional).

The unit is not prearranged for the control of the pump on the evaporator hydraulic circuit, although management of one external pump or two external pumps in parallel, with one in stand-by, can be incorporated. In the first case, the controller will manage pump on/off cycles and shut-down of the unit with alarm signals in the event of faults; in the second case the controller will manage both equalisation of running hours of the two pumps and also cut-in of the stand-by pump with an alarm signal in the event of breakdown of the main pump.

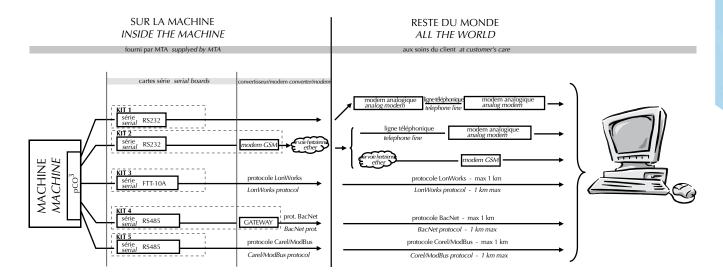
The controller is equipped with an output with 0÷10 V signal to control an inverter driven pump to be installed on the secondary hydraulic circuit of a Variable Water Flow Rate system. For configuration of the chiller for Variable Water Flow Rate operation consult MTA sales before defining the order.

### 12. Options, kits and special designs

**Options** (the options must be specified at the time of the order because they are installed in the factory):

- condensers for tower and well water;
- electronic thermostatic valves in dual circuit models from 1402 to 1802;
- compressor protection by means of automatic cut-outs (models 1401 and from 1402 to 2802);
- packaging for shipment in container.

*Kits* (the kits are supplied separately, generally at the same time of the unit, and installed by the user. They can be supplied later as spare parts, modification kits, completion kits, etc.):


- Condensig pressure control with:
  - pressostatic valves for systems cooled with tower water;
  - pressostatic control valves for systems cooled with city water;
- 3-way modulating servo-controlled valves driven by a 0 10V signal supplied by the unit controller, for systems cooled with tower water;
- 2-way modulating servo-controlled valves driven by a 0 10V signal supplied by the unit controller, for systems cooled with city water

The choice of valve is made on the basis of the water flow rate in each condenser and the maximum closing and adjustment pressure differentials, exclusively for modulating valves, using the "Pressure control valves" and "Modulating valves" tables. Each kit has a single valve for each condenser and includes threaded counter-flanges complete with seals. The user is responsible for installing the valves: installation of support brackets, connections and hydraulic unions (the diameter of the threaded connections may not correspond to the diameter of the condenser connections), refrigerant (pressure control valves) and electrical (modulating valves) connections.

- antivibration mounts;
- single remote control: composed of an ON/OFF switch, summer/ winter changeover switch, green run LED and red general alarm LED, on a plastic wall-mounting enclosure, plus 3 metres of cable for connection to the unit;
- replicated remote control: can be installed at a distance of up to 200 metres and composed of a terminal that is identical to and

- terminal à distance dupliqué : il peut-être installé jusqu'à une distance de 200 mètres, il comprend un terminal, identique et en ajout à celui qui est installé sur la machine et la carte d'interface avec le régulateur de l'unité, montés dans un boîtier mural en plastique prévu à cet effet;
- raccordement série à des systèmes de supervision : ils permettent le raccordement de l'unité avec des systèmes de supervision locale par ordinateur ou par des systèmes BMS; les kits ne comprennent pas les câbles de connexion et les programmes de BMS qui sont à charge du client (pour plus d'informations et de détails techniques, voir le manuel des kits de connexion correspondants):
  - kit carte série RS232;
- kit carte série RS232 + modem GSM : il permet, à travers le modem GSM, l'envoi et la réception de messages SMS pour la signalisation d'alarmes ou pour la variation de paramètres gérés, par port série ;
- kit carte série FTT-10A avec protocole LonWorks;
- kit carte série RS485 et Gateway avec protocole BacNet ;
- kit carte série RS485 avec protocole Modbus ou Carel.

- supplied in addition to the terminal mounted on board the unit, and a board for interface with the unit controller, accommodated in a specific plastic wall-mounting enclosure;
- serial connection to supervision systems: allow connection of the unit to local supervision systems by means of a PC or with BMS systems; the kits do not include the connection cables and the BMS programs, which are to be provided by the customer (for further information and technical details refer to the manual of the relative connection kits):
  - RS232 serial board kit;
  - RS232 serial board + GSM modem kit: the use of a GSM modem makes it possible to send and receive mobile text messages for communication of alarms or display of the parameters managed on the serial line;
  - FTT-10A serial board kit with LonWorks protocol;
  - RS485 serial board kit and Gateway with BacNet protocol;
  - RS485 serial board with ModBus or Carel protocol.



**Exécutions spéciales** (il s'agit des exécutions spéciales plus couramment demandées, qui ne sont normalement pas décrites de façon détaillée dans nos catalogues ; la faisabilité de ces exécutions doit être étudiée et évaluée avant la commande, au cas par cas, avec nos bureaux commerciaux) :

- versions avec température de sortie de l'eau évaporateur inférieure à 0 °C jusqu'à -10 °C;
- tours de refroidissement ouvertes ou à circuit fermé, associables à tous les modèles de la série;
- calorifugeage externe du condenseur avec isolant thermique à finition noire en polyéthylène :
- condensateurs de correction de cos ≥ 0,93 placés dans un boîtier électrique placé sous l'armoire électrique.

*Special designs* (a selection of the most popular special features, normally not described in detail in our catalogues; the feasibility of special designs must be assessed, confirmed, and priced on a case by case basis in communication with our sales offices before placing the order):

- versions with outlet evaporator water temperature from below 0 °C down to -10 °C;
- open or closed circuit cooling towers that can be used in conjunction with all models in the series;
- external insulation of the condenser with thermal insulation material with polyethylene black finish;
- capacitors for compressor power factor correction at cos φ ≥ 0,93 located in an electrical enclosure located under the electrical cabinet.



### **GUIDE DE SÉLECTION - SELECTION GUIDE**

La sélection d'une machine est effectuée à l'aide des tableaux ci de suite et des tableaux données correspondant à chaque machine. Pour une sélection correcte d'un modèle de machine, il faut en outre :

- 1) Vérifier que les limites de fonctionnement indiquées dans le tableau « Limites de fonctionnement » sont respectées ;
- 2) Vérifier que le débit d'eau à refroidir ou chauffer est compris entre les valeurs de débit minimum et maximum indiquées dans le tableau « Données générales » de chaque machine ; des valeurs de débit trop basses causent un écoulement laminaire et par conséquent un danger de gel ainsi qu'un mauvais réglage ; au contraire des valeurs de débit trop élevées causent des pertes de charge excessives et la possibilité de rupture des tubes de l'échangeur de chaleur eau/réfrigérant ;
- 3) Prévoir l'ajout de glycol éthylène et d'autres liquides antigel pour des températures de l'eau à la sortie inférieures à 5 °C. Consulter le tableau « Solutions d'eau et de glycol éthylène » pour déterminer la quantité de glycol éthylène nécessaire et pour évaluer la réduction de rendement frigorifique, l'augmentation de puissance absorbée par les compresseurs et l'augmentation de pertes de charge aux échangeurs.
- 4) Si la différence de température entre l'entrée et la sortie de l'eau aux échangeurs ne correspond pas à la différence nominale, corriger la sélection en utilisant les tableaux « coefficients de correction ΔT ≠ 5 °C ».

For the selection of a machine use the following tables and the data tables relative to each unit. For a correct chiller selection it is also necessary:

- 1)Observe the operational limits as indicated in the chart "Working limits".
- 2)Verify that the cool water flow is between the minim and maximum values of water flow, which are described in the "General Data" table. A very low flow can cause laminar flow and thus danger of ice formation and poor unit control; a very high flow can cause great pressure drops and the possibility of tube failure inside the evaporator.
- 3)For outlet water temperatures under 5 °C it is necessary to add ethylene glycol or any other antifreeze liquids. Consult the chart "Solutions of water and glycol" to determine the necessary quantity of ethylene glycol, the reduction of cooling capacity, the increase of power absorbed by the compressors, the increase of evaporators pressure drop.
- 4)When the difference in temperature between exchangers water inlet and outlet is different from the nominal  $\Delta T$ , the selection must be corrected using the table "Corrective coefficients  $\Delta T \neq 5$  °C".

|          |      | PUISSANCE FR      |      |                      |        |     |      |      |
|----------|------|-------------------|------|----------------------|--------|-----|------|------|
|          |      | de sortie de l'ea |      | t max <sup>(1)</sup> | Pf (2) |     |      |      |
|          | 30   | 35                | 40   | 45                   | 50     | 55  | (°C) | (kW) |
| AQP 1401 | 375  | 356               | 336  | 316                  | 295    | 274 | 55   | 274  |
| AQP 1601 | 450  | 427               | 403  | 377                  | 350    | 321 | 55   | 321  |
| AQP 1801 | 510  | 486               | 462  | 433                  | 404    | 375 | 55   | 375  |
| AQP 2101 | 583  | 553               | 523  | 488                  | 454    | 416 | 55   | 416  |
| AQP 2401 | 639  | 607               | 575  | 539                  | 504    | 467 | 55   | 467  |
| AQP 1402 | 384  | 364               | 343  | 321                  | 298    | 274 | 55   | 274  |
| AQP 1502 | 404  | 384               | 361  | 338                  | 313    | 287 | 55   | 287  |
| AQP 1602 | 432  | 410               | 385  | 360                  | 333    | 303 | 55   | 303  |
| AQP 1802 | 500  | 475               | 448  | 420                  | 390    | 360 | 55   | 360  |
| AQP 2002 | 557  | 530               | 501  | 470                  | 438    | 405 | 55   | 405  |
| AQP 2202 | 598  | 570               | 540  | 507                  | 474    | 440 | 55   | 440  |
| AQP 2502 | 682  | 648               | 612  | 573                  | 532    | 490 | 55   | 490  |
| AQP 2652 | 722  | 686               | 648  | 608                  | 567    | 524 | 55   | 524  |
| AQP 2802 | 767  | 728               | 688  | 647                  | 603    | 559 | 55   | 559  |
| AQP 3202 | 891  | 847               | 798  | 746                  | 693    | 637 | 55   | 637  |
| AQP 3402 | 960  | 913               | 863  | 809                  | 754    | 696 | 55   | 696  |
| AQP 3602 | 1022 | 974               | 922  | 866                  | 809    | 751 | 55   | 751  |
| AQP 4202 | 1172 | 1112              | 1050 | 982                  | 913    | 839 | 55   | 839  |
| AQP 4802 | 1290 | 1225              | 1157 | 1086                 | 1016   | 942 | 55   | 942  |

### **EAU DE PUITS - WELL WATER**

|          |               | PUISSANCE FR      |                |           |        |      |      |      |
|----------|---------------|-------------------|----------------|-----------|--------|------|------|------|
|          | Température o | le sortie de l'ea | nperature (°C) | t max (1) | Pf (2) |      |      |      |
|          | 27            | 30                | 35             | 40        | 45     | 50   | (°C) | (kW) |
| AQP 1401 | 383           | 373               | 353            | 334       | 313    | 293  | 55   | 272  |
| AQP 1601 | 459           | 446               | 424            | 400       | 374    | 346  | 55   | 318  |
| AQP 1801 | 520           | 506               | 482            | 457       | 428    | 400  | 55   | 371  |
| AQP 2101 | 595           | 578               | 549            | 518       | 484    | 449  | 55   | 411  |
| AQP 2401 | 652           | 634               | 601            | 569       | 534    | 498  | 55   | 463  |
| AQP 1402 | 392           | 380               | 360            | 339       | 317    | 294  | 55   | 270  |
| AQP 1502 | 413           | 401               | 380            | 358       | 335    | 310  | 55   | 283  |
| AQP 1602 | 441           | 428               | 406            | 382       | 356    | 329  | 55   | 299  |
| AQP 1802 | 512           | 497               | 472            | 445       | 416    | 387  | 55   | 357  |
| AQP 2002 | 569           | 553               | 526            | 497       | 466    | 435  | 55   | 402  |
| AQP 2202 | 610           | 593               | 566            | 535       | 503    | 470  | 55   | 436  |
| AQP 2502 | 696           | 677               | 643            | 608       | 567    | 526  | 55   | 482  |
| AQP 2652 | 738           | 718               | 682            | 645       | 604    | 563  | 55   | 520  |
| AQP 2802 | 784           | 762               | 723            | 685       | 641    | 599  | 55   | 555  |
| AQP 3202 | 911           | 886               | 841            | 793       | 744    | 690  | 55   | 663  |
| AQP 3402 | 978           | 952               | 906            | 857       | 801    | 746  | 55   | 688  |
| AQP 3602 | 1041          | 1014              | 966            | 917       | 858    | 801  | 55   | 741  |
| AQP 4202 | 1195          | 1161              | 1103           | 1039      | 974    | 904  | 55   | 830  |
| AQP 4802 | 1317          | 1281              | 1215           | 1149      | 1079   | 1007 | 55   | 933  |

- (1) Température maximum au condenseur, pour une température de sortie de l'eau évaporateur de 7 °C. Maximum condenser temperature, refer to outlet water temperature condition at 7 °C.
- (2) Rendement frigorifique à la température maximum au condenseur. Cooling capacity refer to the maximum condenser temperature.

Pour sélectionner le modèle de refroidisseur, il faut choisir la colonne qui indique la température maximum au condenseur et la ligne avec la puissance frigorifique requise. Les puissances indiqués sur le tableau se réfèrent aux conditions suivantes : température entrée / sortie eau évaporateur 12 °C / 7 °C, température entrée / sortie eau condenseur 15 °C / 30 °C (eau de puits), température entrée / sortie eau condenseur 30 °C / 35 °C (eau de tour). Pour des conditions différentes et pour les autres caractéristiques de la machine, consulter les tableaux internes concernant le modèle sélectionné. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système de régulation « unloading » (délestage) de réduction par étages de puissance intervient. To select the chiller model you must choose the column that indicates the maximum condenser temperature and the line with the capacity requested. The capacities shown in the table refer to the following conditions: evaporator inlet / outlet water temperature 12 °C / 7 °C, condenser inlet / outlet water temperature 15 °C / 30 °C (City water plants), condenser inlet / outlet water temperature 30 °C / 35 °C (Tower water plants). For other conditions and other unit specifications, consult the internal tables relative to the model selected. When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated.

AQUARIUS pla

### DONNÉES GÉNÉRALES - PERFORMANCE AND TECHNICAL DATA

### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor        |                      |           | N                           | SSN       |  |
|-------------------------------|----------------------|-----------|-----------------------------|-----------|--|
| Circuits frigorifiques        | Cooling circuits     | N°        | 1                           |           |  |
| Compresseurs                  | Compressors          | N°        | 1                           |           |  |
| Étages de puissance           | Capacity control     | %         | 50 ÷ 100 continu continuous |           |  |
| ESSER (1)                     | ESSER <sup>(1)</sup> | -         | 6,11                        |           |  |
| IPLV (2)                      | IPLV <sup>(2)</sup>  | -         | 6,                          | 32        |  |
| Alimentation électrique Elect | rical power supply   |           |                             |           |  |
| Duissansa                     | Down                 | \//Db/LL= | 400 + 10                    | 0/ /2 /50 |  |

| Puissance   | Power     | V/Ph/Hz | 400 ± 10 % / 3 / 50      |
|-------------|-----------|---------|--------------------------|
| Auxiliaires | Auxiliary | V/Ph/Hz | 24 - 230 ± 10 % / 1 / 50 |
| 4           |           |         |                          |

Évaporateur Evaporator

| Débit minimum                                | Min flow rate | m³/h | 29,5  |  |  |  |
|----------------------------------------------|---------------|------|-------|--|--|--|
| Débit maximum                                | Max flow rate | m³/h | 87,4  |  |  |  |
| Volume d'eau                                 | Water volume  | I    | 113,5 |  |  |  |
| Condenseur eau de tour Tower water condenser |               |      |       |  |  |  |

| Quantité                     | Quantity                    | N°   | 1    |
|------------------------------|-----------------------------|------|------|
| Débit minimum <sup>(3)</sup> | Min condenser flow rate (3) | m³/h | 16,0 |
| Débit maximum <sup>(3)</sup> | Max condenser flow rate (3) | m³/h | 108  |
| Volume d'eau                 | Condenser water volume      | I    | 54,5 |

Condenseur eau de puits City water condenser

| Quantité          | Quantity                    | N°   | 1    |
|-------------------|-----------------------------|------|------|
| Débit minimum (3) | Min condenser flow rate (3) | m³/h | 8,00 |
| Débit maximum (3) | Max condenser flow rate (3) | m³/h | 45,1 |
| Volume d'eau      | Condenser water volume      | I    | 54,5 |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1020 | 1020 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 3445 | 3445 |
| Hauteur  | Height | mm | 2020 | 2020 |
| Poids    | Weight | kg | 2455 | 2605 |

- (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 128      | 210     | 665     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|                                                      |      | Bandes d'octave - Octave bands (Hz) |      |      |      |        |           |      | Puissance | Pression |
|------------------------------------------------------|------|-------------------------------------|------|------|------|--------|-----------|------|-----------|----------|
|                                                      | 63   | 125                                 | 250  | 500  | 1000 | 2000   | 4000      | 8000 | Power     | Pressure |
| Niveau de puissance sonore - Sound power level dB(A) |      |                                     |      |      |      | dB (A) | dB (A)10m |      |           |          |
| N                                                    | 54,5 | 55,9                                | 88,9 | 90,5 | 94,3 | 86,5   | 70,7      | 57,1 | 97,0      | 69,0     |
| SSN                                                  | 48,5 | 49,9                                | 82,9 | 84,5 | 88,3 | 80,5   | 64,7      | 51,1 | 91,0      | 63,0     |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance  $\pm$ 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula:  $\pm$ 4B(A)10m+Kdb.

## AQUARIUS plus 140

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidisseme | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau a | u cond | lenseu    | r - Oı | ıtlet w | ater c    | onden | ser ter | nperat    | ure (° | °C)  |           |           |
|---------------|------|------|------|-----------|--------|--------|-----------|--------|--------|-----------|--------|---------|-----------|-------|---------|-----------|--------|------|-----------|-----------|
| Cooling       |      |      | 30   |           |        | 35     |           |        | 40     |           |        | 45      |           |       | 50      |           |        | 55   |           | t max.(*) |
|               |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf     | Pa      | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        | (°C)      |
| tu (          | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |           |
|               | 5    | 349  | 63,7 | 59,7      | 331    | 69,1   | 56,7      | 312    | 75,6   | 53,5      | 294    | 83,1    | 50,3      | 274   | 92,0    | 46,9      | 253    | 102  | 43,4      | 55        |
|               | 6    | 362  | 64,2 | 62,0      | 343    | 69,8   | 58,8      | 325    | 76,0   | 55,7      | 305    | 83,8    | 52,2      | 285   | 92,6    | 48,8      | 264    | 103  | 45,2      | 55        |
| NI CCNI       | 7    | 375  | 64,7 | 64,3      | 356    | 70,3   | 61,0      | 336    | 76,8   | 57,6      | 316    | 84,2    | 54,2      | 295   | 93,3    | 50,6      | 274    | 104  | 47,0      | 55        |
| N - SSN       | 8    | 388  | 65,4 | 66,5      | 369    | 70,8   | 63,2      | 348    | 77,4   | 59,7      | 329    | 84,7    | 56,4      | 306   | 93,9    | 52,5      | 284    | 105  | 48,7      | 55        |
|               | 9    | 401  | 66,0 | 68,7      | 381    | 71,5   | 65,3      | 360    | 77,9   | 61,8      | 339    | 85,6    | 58,1      | 318   | 94,2    | 54,5      | 294    | 105  | 50,5      | 55        |
|               | 10   | 415  | 66,5 | 71,2      | 393    | 72,1   | 67,4      | 372    | 78,6   | 63,8      | 350    | 86,2    | 60,1      | 328   | 95,3    | 56,2      | 304    | 106  | 52,2      | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidissem | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | u conc | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | °C)  |           |
|--------------|------|------|------|-----------|--------|--------|-----------|-------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling      |      |      | 27   |           |        | 30     |           |       | 35     |           |        | 40     |           |       | 45      |           |        | 50   |           |
|              |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu           | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|              | 5    | 357  | 61,3 | 61,1      | 347    | 64,2   | 59,4      | 330   | 69,8   | 56,5      | 311    | 76,3   | 53,2      | 292   | 83,9    | 50,0      | 272    | 92,9 | 46,6      |
|              | 6    | 370  | 61,9 | 63,4      | 359    | 65,0   | 61,6      | 341   | 70,5   | 58,5      | 323    | 77,0   | 55,3      | 303   | 84,6    | 51,9      | 283    | 93,5 | 48,5      |
| N - SSN      | 7    | 383  | 62,5 | 65,7      | 373    | 65,5   | 63,8      | 353   | 71,2   | 60,5      | 334    | 77,6   | 57,3      | 313   | 85,3    | 53,7      | 293    | 94,3 | 50,3      |
| IN - 33IN    | 8    | 396  | 63,2 | 67,9      | 385    | 66,1   | 66,0      | 366   | 71,7   | 62,7      | 345    | 78,4   | 59,2      | 326   | 85,7    | 55,9      | 304    | 95,1 | 52,1      |
|              | 9    | 411  | 63,7 | 70,4      | 399    | 66,8   | 68,4      | 378   | 72,4   | 64,8      | 358    | 78,8   | 61,3      | 336   | 86,9    | 57,5      | 315    | 95,5 | 53,9      |
|              | 10   | 424  | 64,2 | 72,8      | 412    | 67,2   | 70,7      | 391   | 73,0   | 67,0      | 369    | 79,6   | 63,3      | 347   | 87,3    | 59,6      | 327    | 96,0 | 56,1      |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

ΔT condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated.

Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.



| Compresseur Compressor                 |                                        |                             | N              | SSN                   |  |  |  |  |
|----------------------------------------|----------------------------------------|-----------------------------|----------------|-----------------------|--|--|--|--|
| Circuits frigorifiques                 | Cooling circuits                       | N°                          | 1              |                       |  |  |  |  |
| Compresseurs                           | Compressors                            | N°                          | 1              |                       |  |  |  |  |
| Étages de puissance                    | Capacity control                       | %                           | 50 ÷ 100 conti | nu c <i>ontinuous</i> |  |  |  |  |
| ESSER (1)                              | ESSER (1)                              | -                           | 5,86           |                       |  |  |  |  |
| IPLV (2)                               | IPLV (2)                               | -                           | 6,13           |                       |  |  |  |  |
| Alimentation électrique Electrical     | power supply                           |                             |                |                       |  |  |  |  |
| Puissance                              | Power                                  | V/Ph/Hz 400 ± 10 % / 3 / 50 |                |                       |  |  |  |  |
| Auxiliaires                            | Auxiliary                              | V/Ph/Hz                     | 24 - 230 ± 1   | 0 % / 1 / 50          |  |  |  |  |
| Évaporateur <i>Evaporator</i>          |                                        |                             |                |                       |  |  |  |  |
| Débit minimum                          | Min flow rate                          | m³/h                        | 29             | ,5                    |  |  |  |  |
| Débit maximum                          | Max flow rate                          | m³/h                        | 87,4           |                       |  |  |  |  |
| Volume d'eau                           | Water volume                           | I                           | 113            | 3,5                   |  |  |  |  |
| Condenseur eau de tour <i>Tower wa</i> | ater condenser                         |                             |                |                       |  |  |  |  |
| Quantité                               | Quantity                               | N°                          | 1              |                       |  |  |  |  |
| Débit minimum <sup>(3)</sup>           | Min condenser flow rate <sup>(3)</sup> | m³/h                        | 18             | ,0                    |  |  |  |  |
| Débit maximum <sup>(3)</sup>           | Max condenser flow rate (3)            | m³/h                        | 118            |                       |  |  |  |  |
| Volume d'eau                           | Condenser water volume                 | I                           | 58             | ,7                    |  |  |  |  |
| Condenseur eau de puits City wat       | er condenser                           |                             |                |                       |  |  |  |  |
| Quantité                               | Quantity                               | N°                          | 1              |                       |  |  |  |  |
| Débit minimum (3)                      | Min condenser flow rate <sup>(3)</sup> | m³/h                        | 9,0            | 00                    |  |  |  |  |
| Débit maximum (3)                      | Max condenser flow rate (3)            | m³/h                        | 49             | ,5                    |  |  |  |  |
| Volume d'eau                           | Condenser water volume                 | I                           | 58             | ,7                    |  |  |  |  |
| Dimensions et poids en service D       | imensions and installed weight         |                             |                |                       |  |  |  |  |
| Largeur                                | Width                                  | mm                          | 1020           | 1020                  |  |  |  |  |
| Longueur                               | Length                                 | mm                          | 3445           | 3445                  |  |  |  |  |
| Hauteur                                | Height                                 | mm                          | 2020           | 2020                  |  |  |  |  |
| Poids                                  | Weight                                 | kg                          | 2909           | 3059                  |  |  |  |  |

- (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 146      | 237     | 436     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Bandes o |        | Puissance | Pression |      |      |       |          |
|-----|------|----------|----------|--------|-----------|----------|------|------|-------|----------|
|     | 63   | 125      | 250      | 500    | 1000      | 2000     | 4000 | 8000 | Power | Pressure |
|     |      | Niveau o |          | dB (A) | dB (A)10m |          |      |      |       |          |
| N   | 48,0 | 71,5     | 85,2     | 88,2   | 93,8      | 86,3     | 80,8 | 66,6 | 96,0  | 68,0     |
| SSN | 42,0 | 65,5     | 79,2     | 82,2   | 87,8      | 80,3     | 74,8 | 60,6 | 90,0  | 62,0     |

| Distance (1) |     |
|--------------|-----|
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance  $\pm$ 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula:  $\pm$ 4B(A)10m+Kdb.

### bnue eveuō

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidisseme | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | u cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser tei | nperat    | ure (° | (C)  |                     |
|---------------|------|------|------|-----------|--------|--------|-----------|-------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|---------------------|
| Cooling       |      |      | 30   |           |        | 35     |           |       | 40     |           |        | 45     |           |       | 50      |           |        | 55   |                     |
|               |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw                  |
| tu (          | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | (m <sup>3</sup> /h) |
|               | 5    | 418  | 75,5 | 71,6      | 398    | 82,1   | 68,1      | 374   | 89,7   | 64,1      | 349    | 98,2   | 59,8      | 323   | 108     | 55,3      | 295    | 119  | 50,5                |
|               | 6    | 434  | 76,1 | 74,4      | 412    | 82,8   | 70,6      | 389   | 90,3   | 66,6      | 364    | 98,9   | 62,3      | 337   | 109     | 57,7      | 308    | 120  | 52,8                |
| NI CCNI       | 7    | 450  | 76,7 | 77,0      | 427    | 83,5   | 73,2      | 403   | 91,1   | 69,1      | 377    | 100    | 64,6      | 350   | 109     | 60,0      | 321    | 121  | 55,0                |
| N - SSN       | 8    | 464  | 77,3 | 79,6      | 442    | 84,2   | 75,7      | 417   | 91,9   | 71,4      | 392    | 100    | 67,2      | 362   | 110     | 62,1      | 333    | 121  | 57,1                |
|               | 9    | 481  | 77,8 | 82,4      | 456    | 84,9   | 78,1      | 430   | 92,5   | 73,8      | 403    | 101    | 69,1      | 375   | 111     | 64,3      | 345    | 122  | 59,2                |
|               | 10   | 495  | 78,6 | 84,9      | 471    | 85,6   | 80,8      | 444   | 93,4   | 76,1      | 416    | 102    | 71,4      | 390   | 111     | 66,8      | 356    | 123  | 61,1                |

| t max.(*)<br>(°C) |
|-------------------|
| 55                |
| 55                |
| 55                |
| 55                |
| 55                |
| 55                |

### PERFORMANCES - PERFORMANCE DATA

### **EAU DE PUITS - WELL WATER**

| Refroidissem | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | u cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | °C)  |           |
|--------------|------|------|------|-----------|--------|--------|-----------|-------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling      |      | 27   |      |           | 30     |        |           | 35    |        | 40        |        |        |           | 45    |         |           | 50     |      |           |
|              |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu           | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|              | 5    | 427  | 72,6 | 73,2      | 416    | 76,3   | 71,2      | 395   | 83,1   | 67,6      | 371    | 90,7   | 63,5      | 347   | 99,1    | 59,4      | 320    | 109  | 54,8      |
|              | 6    | 444  | 73,2 | 76,0      | 431    | 77,0   | 73,9      | 409   | 83,8   | 70,1      | 385    | 91,3   | 66,0      | 360   | 100     | 61,7      | 334    | 110  | 57,2      |
| NI CCNI      | 7    | 459  | 73,8 | 78,7      | 446    | 77,6   | 76,5      | 424   | 84,5   | 72,7      | 400    | 92,1   | 68,5      | 374   | 101     | 64,1      | 346    | 111  | 59,4      |
| N - SSN      | 8    | 475  | 74,5 | 81,4      | 461    | 78,4   | 79,0      | 438   | 85,2   | 75,1      | 413    | 92,9   | 70,8      | 388   | 101     | 66,5      | 359    | 111  | 61,6      |
|              | 9    | 490  | 75,0 | 84,1      | 477    | 78,9   | 81,8      | 451   | 86,1   | 77,4      | 426    | 93,7   | 73,1      | 400   | 102     | 68,5      | 371    | 112  | 63,6      |
|              | 10   | 505  | 75,7 | 86,6      | 491    | 79,7   | 84,3      | 467   | 86,7   | 80,1      | 439    | 94,7   | 75,3      | 412   | 103     | 70,7      | 385    | 113  | 66,1      |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

 $\Delta T$  condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated.

Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser =  $15 \, ^{\circ}C$ 

To calculate performances at diferring water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.



### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor           |                     |         | N              | SSN                   |
|----------------------------------|---------------------|---------|----------------|-----------------------|
| Circuits frigorifiques           | Cooling circuits    | N°      | 1              |                       |
| Compresseurs                     | Compressors         | N°      | 1              |                       |
| Étages de puissance              | Capacity control    | %       | 50 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                        | ESSER (1)           | -       | 6,3            | 26                    |
| IPLV (2)                         | IPLV <sup>(2)</sup> | -       | 6,.            | 52                    |
| Alimentation électrique Electric | cal power supply    |         |                |                       |
| Puissance                        | Power               | V/Ph/Hz | 400 ± 10       | %/3/50                |

| Auxiliaires            | Auxiliary     | V/Ph/Hz | 24 - 230 ± 10 % / 1 / 50 |
|------------------------|---------------|---------|--------------------------|
| Évaporateur Evaporator |               |         |                          |
| Déhit minimum          | Min flow rate | m 3 /h  | 47.0                     |

| Débit minimum | Min flow rate | m³/h | 47,0  |
|---------------|---------------|------|-------|
| Débit maximum | Max flow rate | m³/h | 153   |
| Volume d'eau  | Water volume  | I    | 184,4 |

Condenseur eau de tour Tower water condenser

| Quantité          | Quantity                    | N°   | 1    |
|-------------------|-----------------------------|------|------|
| Débit minimum (3) | Min condenser flow rate (3) | m³/h | 21,0 |
| Débit maximum (3) | Max condenser flow rate (3) | m³/h | 141  |
| Volume d'eau      | Condenser water volume      | 1    | 69,7 |

Condenseur eau de puits City water condenser

| Quantité                     | Quantity                    | N°   | 1    |
|------------------------------|-----------------------------|------|------|
| Débit minimum <sup>(3)</sup> | Min condenser flow rate (3) | m³/h | 10,5 |
| Débit maximum <sup>(3)</sup> | Max condenser flow rate (3) | m³/h | 58,8 |
| Volume d'eau                 | Condenser water volume      | Ι    | 69,7 |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1020 | 1020 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 3445 | 3445 |
| Hauteur  | Height | mm | 2110 | 2110 |
| Poids    | Weight | kg | 3420 | 3570 |

(1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;

- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/ max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 172      | 274     | 465     |

FLI = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; FLA = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; ICF = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          |            | Puissance | Pression |           |      |      |       |          |
|-----|------|----------|------------|-----------|----------|-----------|------|------|-------|----------|
|     | 63   | 125      | 250        | 500       | 1000     | 2000      | 4000 | 8000 | Power | Pressure |
|     |      | Niveau o | de puissar |           | dB (A)   | dB (A)10m |      |      |       |          |
| N   | 43,0 | 67,8     | 89,3       | 89,6      | 92,0     | 87,3      | 79,2 | 67,7 | 96,0  | 68,0     |
| SSN | 37,0 | 61,8     | 83,3       | 83,6      | 86,0     | 81,3      | 73,2 | 61,7 | 90,0  | 62,0     |

| Distance (1) |     |
|--------------|-----|
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance +/- 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula: dB(A)L=dB(A)10m+Kdb.

### AQUARIUS plus 180

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissement Température de sortie de l'eau au condenseur - Outlet water condenser temperature (°C) |               |      |      |           |      |      |           |      |      |           |      |      |           |      |      |           |      |      |           |
|--------------------------------------------------------------------------------------------------------|---------------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|
| Cooling                                                                                                |               |      | 30   |           |      | 35   |           |      | 40   |           |      | 45   |           |      | 50   |           |      | 55   |           |
|                                                                                                        |               | Pf   | Pa   | Fw        |
| tu (                                                                                                   | (° <b>C</b> ) | (kW) | (kW) | $(m^3/h)$ |
|                                                                                                        | 5             | 475  | 85,3 | 81,4      | 453  | 94,4 | 77,5      | 428  | 105  | 73,2      | 401  | 116  | 68,8      | 374  | 128  | 64,1      | 345  | 142  | 59,1      |
|                                                                                                        | 6             | 493  | 86,0 | 84,4      | 470  | 94,9 | 80,5      | 444  | 105  | 76,0      | 417  | 116  | 71,5      | 389  | 129  | 66,7      | 361  | 142  | 61,8      |
| NI CCNI                                                                                                | 7             | 510  | 86,5 | 87,4      | 486  | 95,5 | 83,3      | 462  | 105  | 79,1      | 433  | 117  | 74,2      | 404  | 129  | 69,3      | 375  | 143  | 64,2      |
| N - SSN                                                                                                | 8             | 527  | 87,0 | 90,3      | 502  | 96,0 | 86,1      | 475  | 106  | 81,5      | 449  | 117  | 76,9      | 418  | 130  | 71,7      | 388  | 144  | 66,5      |
|                                                                                                        | 9             | 543  | 87,6 | 93,1      | 518  | 96,6 | 88,8      | 491  | 107  | 84,2      | 462  | 118  | 79,3      | 432  | 131  | 74,1      | 401  | 145  | 68,8      |
|                                                                                                        | 10            | 560  | 88,2 | 96,1      | 533  | 97,2 | 91,4      | 506  | 107  | 86,8      | 477  | 119  | 81,8      | 448  | 131  | 76,9      | 414  | 145  | 71,1      |

### (.(\*)

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidissen | nent |      | Température de sortie de l'eau au condenseur - Outlet water condenser temperature (°C) |           |      |      |           |      |      |           |      |      |           |      |      |           |      |      |           |
|--------------|------|------|----------------------------------------------------------------------------------------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|
| Cooling      |      | 27   |                                                                                        |           | 30   |      | 35        |      | 40   |           | 45   |      |           | 50   |      |           |      |      |           |
|              |      | Pf   | Pa                                                                                     | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        |
| tu           | (°C) | (kW) | (kW)                                                                                   | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ |
|              | 5    | 484  | 81,9                                                                                   | 83,0      | 472  | 86,7 | 80,8      | 448  | 96,0 | 76,8      | 424  | 106  | 72,6      | 398  | 117  | 68,2      | 371  | 130  | 63,5      |
|              | 6    | 503  | 82,3                                                                                   | 86,1      | 489  | 87,4 | 83,8      | 466  | 96,4 | 79,8      | 439  | 107  | 75,2      | 413  | 118  | 70,8      | 386  | 131  | 66,1      |
| NI CCN       | , 7  | 520  | 82,9                                                                                   | 89,1      | 506  | 87,8 | 86,8      | 482  | 97,1 | 82,6      | 457  | 107  | 78,3      | 428  | 119  | 73,4      | 400  | 131  | 68,5      |
| N - SSN      | 8    | 536  | 83,7                                                                                   | 91,9      | 522  | 88,8 | 89,4      | 497  | 97,7 | 85,3      | 471  | 108  | 80,7      | 443  | 119  | 76,0      | 414  | 132  | 70,9      |
|              | 9    | 554  | 84,2                                                                                   | 95,1      | 538  | 89,1 | 92,3      | 512  | 98,5 | 87,8      | 486  | 109  | 83,3      | 458  | 120  | 78,4      | 427  | 133  | 73,2      |
|              | 10   | 571  | 84,8                                                                                   | 97,9      | 554  | 89,8 | 95,1      | 528  | 99,0 | 90,6      | 500  | 109  | 85,8      | 472  | 121  | 80,9      | 443  | 133  | 76,0      |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

Tower water condenser  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.

### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor                          |                  |         | N              | SSN                   |  |  |  |  |
|-------------------------------------------------|------------------|---------|----------------|-----------------------|--|--|--|--|
| Circuits frigorifiques                          | Cooling circuits | N°      | 1              |                       |  |  |  |  |
| Compresseurs                                    | Compressors      | N°      | 1              |                       |  |  |  |  |
| Étages de puissance                             | Capacity control | %       | 50 ÷ 100 conti | nu c <i>ontinuous</i> |  |  |  |  |
| ESSER (1)                                       | ESSER (1)        | -       | 5,             | 55                    |  |  |  |  |
| IPLV (2)                                        | IPLV (2)         | -       | 5,             | 39                    |  |  |  |  |
| Alimentation électrique Electrical power supply |                  |         |                |                       |  |  |  |  |
| Puissance                                       | Power            | V/Ph/Hz | 400 ± 10       | %/3/50                |  |  |  |  |

| Puissance   | Power     | V/Ph/Hz | 400 ± 10 % / 3 / 50      |
|-------------|-----------|---------|--------------------------|
| Auxiliaires | Auxiliary | V/Ph/Hz | 24 - 230 ± 10 % / 1 / 50 |
| ,           |           |         |                          |

| Évaporateur | Evaporator |
|-------------|------------|
|-------------|------------|

| Débit minimum | Min flow rate | m³/h | 47,0  |
|---------------|---------------|------|-------|
| Débit maximum | Max flow rate | m³/h | 153   |
| Volume d'eau  | Water volume  | I    | 184,4 |

### Condenseur eau de tour Tower water condenser

| Quantité          | Quantity                    | N°   | 1    |
|-------------------|-----------------------------|------|------|
| Débit minimum (3) | Min condenser flow rate (3) | m³/h | 23,0 |
| Débit maximum (3) | Max condenser flow rate (3) | m³/h | 155  |
| Volume d'eau      | Condenser water volume      | I    | 76,7 |

### Condenseur eau de puits City water condenser

| Quantité                     | Quantity                    | N°   | 1    |
|------------------------------|-----------------------------|------|------|
| Débit minimum <sup>(3)</sup> | Min condenser flow rate (3) | m³/h | 11,5 |
| Débit maximum <sup>(3)</sup> | Max condenser flow rate (3) | m³/h | 64,7 |
| Volume d'eau                 | Condenser water volume      | I    | 76,7 |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1020 | 1020 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 3445 | 3445 |
| Hauteur  | Height | mm | 2110 | 2110 |
| Poids    | Weight | kg | 3477 | 3627 |

- (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 192      | 312     | 586     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Puissance | Pression  |      |      |      |      |       |          |
|-----|------|----------|-----------|-----------|------|------|------|------|-------|----------|
|     | 63   | 125      | 250       | 500       | 1000 | 2000 | 4000 | 8000 | Power | Pressure |
|     |      | Niveau o | dB (A)    | dB (A)10m |      |      |      |      |       |          |
| N   | 46,9 | 67,2     | 90,8      | 91,3      | 92,2 | 89,1 | 70,3 | 58,9 | 97,0  | 69,0     |
| SSN | 40,9 | 61,2     | 84,8      | 85,3      | 86,2 | 83,1 | 64,3 | 52,9 | 91,0  | 63,0     |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance  $\pm$ 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula:  $\pm$ 4B(A)10m+Kdb.

## AQUARIUS plus 210

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidisseme | ent           |      | Température de sortie de l'eau au condenseur - Outlet water condenser temperature (°C) |           |      |      |           |      |      |           |      |      |           |      |      |           |      |      |           |           |
|---------------|---------------|------|----------------------------------------------------------------------------------------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|-----------|
| Cooling       |               |      | 30                                                                                     |           |      | 35   |           |      | 40   |           |      | 45   |           |      | 50   |           |      | 55   |           | t max.(*) |
|               |               | Pf   | Pa                                                                                     | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | (°C)      |
| tu            | (° <b>C</b> ) | (kW) | (kW)                                                                                   | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ |           |
|               | 5             | 542  | 98,3                                                                                   | 92,9      | 514  | 107  | 88,0      | 484  | 116  | 83,0      | 452  | 127  | 77,5      | 418  | 139  | 71,5      | 382  | 153  | 65,5      | 55        |
|               | 6             | 563  | 100                                                                                    | 96,4      | 534  | 108  | 91,4      | 503  | 117  | 86,3      | 471  | 128  | 80,7      | 437  | 140  | 74,8      | 399  | 154  | 68,4      | 55        |
| NI CCNI       | 7             | 583  | 101                                                                                    | 100       | 553  | 109  | 94,8      | 523  | 118  | 89,7      | 488  | 129  | 83,7      | 454  | 141  | 77,8      | 416  | 155  | 71,3      | 55        |
| N - SSN       | 8             | 601  | 102                                                                                    | 103       | 572  | 110  | 98,0      | 540  | 119  | 92,5      | 506  | 130  | 86,7      | 471  | 142  | 80,7      | 433  | 157  | 74,2      | 55        |
|               | 9             | 620  | 103                                                                                    | 106       | 589  | 111  | 101       | 557  | 120  | 95,5      | 522  | 131  | 89,5      | 486  | 144  | 83,3      | 448  | 158  | 76,9      | 55        |
|               | 10            | 640  | 104                                                                                    | 110       | 607  | 112  | 104       | 574  | 122  | 98,4      | 539  | 132  | 92,4      | 503  | 144  | 86,3      | 463  | 159  | 79,5      | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidisseme | ent |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | ı cond | lenseu    | r - <i>Ou</i> | ıtlet w | ater co   | onden | ser ter | nperat    | ure (° | C)   |           |
|---------------|-----|------|------|-----------|--------|--------|-----------|-------|--------|-----------|---------------|---------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling       |     | 27   |      |           | 30     |        |           | 35    |        | 40        |               | 45      |           |       | 50      |           |        |      |           |
|               |     | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf            | Pa      | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu (          | °C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)          | (kW)    | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|               | 5   | 554  | 95,1 | 94,8      | 538    | 99,4   | 92,2      | 509   | 108    | 87,2      | 480           | 117     | 82,2      | 449   | 128     | 76,9      | 414    | 141  | 70,9      |
|               | 6   | 575  | 96,3 | 98,5      | 558    | 101    | 95,7      | 532   | 109    | 91,1      | 499           | 118     | 85,5      | 466   | 130     | 79,9      | 433    | 142  | 74,1      |
| NI CCNI       | 7   | 595  | 97,5 | 102       | 578    | 102    | 99,0      | 549   | 110    | 94,0      | 518           | 119     | 88,8      | 484   | 131     | 83,0      | 449    | 143  | 76,9      |
| N - SSN       | 8   | 614  | 98,8 | 105       | 596    | 103    | 102       | 567   | 111    | 97,1      | 534           | 121     | 91,6      | 501   | 132     | 85,8      | 465    | 144  | 79,7      |
|               | 9   | 634  | 100  | 109       | 615    | 104    | 105       | 583   | 113    | 100       | 551           | 122     | 94,5      | 520   | 133     | 89,1      | 481    | 146  | 82,5      |
|               | 10  | 652  | 102  | 112       | 635    | 106    | 109       | 601   | 114    | 103       | 567           | 123     | 97,3      | 533   | 134     | 91,4      | 497    | 146  | 85,3      |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

 $\Delta T$  condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

**Fw**: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated.

Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet ΔT levels, refer to the "ΔT correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.

Poids



| Compresseur Compressor           |                                        |         | N              | SSN                    |  |  |
|----------------------------------|----------------------------------------|---------|----------------|------------------------|--|--|
| Circuits frigorifiques           | Cooling circuits                       | N°      |                | 1                      |  |  |
| Compresseurs                     | Compressors                            | N°      |                | 1                      |  |  |
| Étages de puissance              | Capacity control                       | %       | 50 ÷ 100 conti | inu c <i>ontinuous</i> |  |  |
| ESSER (1)                        | ESSER (1)                              | -       | 6,             | 18                     |  |  |
| IPLV (2)                         | IPLV <sup>(2)</sup>                    | -       | 6,             | 43                     |  |  |
| Alimentation électrique Electric | cal power supply                       |         |                |                        |  |  |
| Puissance                        | Power                                  | V/Ph/Hz | 400 ± 10       | %/3/50                 |  |  |
| Auxiliaires                      | Auxiliary                              | V/Ph/Hz | 24 - 230 ± 1   | 10 % / 1 / 50          |  |  |
| Évaporateur <i>Evaporator</i>    |                                        |         |                |                        |  |  |
| Débit minimum                    | Min flow rate                          | m³/h    | 47             | 7,0                    |  |  |
| Débit maximum                    | Max flow rate                          | m³/h    | 1.             | 53                     |  |  |
| Volume d'eau                     | Water volume                           | I       | 18             | 4,4                    |  |  |
| Condenseur eau de tour Tower     | water condenser                        |         |                |                        |  |  |
| Quantité                         | Quantity                               | N°      |                | 1                      |  |  |
| Débit minimum (3)                | Min condenser flow rate (3)            | m³/h    | 26             | 5,0                    |  |  |
| Débit maximum (3)                | Max condenser flow rate (3)            | m³/h    | 1:             | 74                     |  |  |
| Volume d'eau                     | Condenser water volume                 | 1       | 86             | 5,1                    |  |  |
| Condenseur eau de puits City v   | water condenser                        |         |                |                        |  |  |
| Quantité                         | Quantity                               | N°      |                | 1                      |  |  |
| Débit minimum (3)                | Min condenser flow rate (3)            | m³/h    | 13             | 3,5                    |  |  |
| Débit maximum (3)                | Max condenser flow rate <sup>(3)</sup> | m³/h    | 72             | 2,5                    |  |  |
| Volume d'eau                     | Condenser water volume                 | I       | 86             | 5,1                    |  |  |
| Dimensions et poids en service   | Dimensions and installed weight        |         |                |                        |  |  |
| Largeur                          | Width                                  | mm      | 1020           | 1020                   |  |  |
| Longueur                         | Length                                 | mm      | 3445 3445      |                        |  |  |
| Hauteur                          | Height                                 | mm      | 2110           | 2110                   |  |  |

- Weight (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/ max flows are the total value.

3586

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 218      | 353     | 650     |

FLI = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; FLA = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; ICF = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Puissance | Pression  |      |      |      |      |       |          |
|-----|------|----------|-----------|-----------|------|------|------|------|-------|----------|
|     | 63   | 125      | 250       | 500       | 1000 | 2000 | 4000 | 8000 | Power | Pressure |
|     |      | Niveau o | dB (A)    | dB (A)10m |      |      |      |      |       |          |
| N   | 46,2 | 68,0     | 89,5      | 90,5      | 95,3 | 89,2 | 78,7 | 65,9 | 98,0  | 70,0     |
| SSN | 40,2 | 62,0     | 83,5      | 84,5      | 89,3 | 83,2 | 72,7 | 59,9 | 92,0  | 64,0     |

| Distance (1) |     |
|--------------|-----|
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

3736

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance +/- 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula: dB(A)L=dB(A)10m+Kdb.

### s 2401

## AQUARIUS plus 240

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissem | nent |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | u con | denseu    | r - <i>O</i> u | ıtlet w | ater co   | onden | ser tei | nperat    | ure (° | °C)  |           |           |
|--------------|------|------|------|-----------|--------|--------|-----------|-------|-------|-----------|----------------|---------|-----------|-------|---------|-----------|--------|------|-----------|-----------|
| Cooling      |      |      | 30   |           |        | 35     |           |       | 40    |           |                | 45      |           |       | 50      |           |        | 55   |           | t max.(*) |
|              |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa    | Fw        | Pf             | Pa      | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        | (°C)      |
| tu           | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)  | $(m^3/h)$ | (kW)           | (kW)    | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |           |
|              | 5    | 594  | 107  | 102       | 563    | 117    | 96        | 533   | 128   | 91,3      | 500            | 141     | 85,7      | 466   | 156     | 79,9      | 430    | 174  | 73,6      | 55        |
|              | 6    | 617  | 108  | 106       | 586    | 118    | 100       | 553   | 129   | 94,8      | 520            | 141     | 89,1      | 485   | 157     | 83,1      | 448    | 175  | 76,7      | 55        |
| NI CCN       | . 7  | 639  | 109  | 109       | 607    | 119    | 104       | 575   | 129   | 98,5      | 539            | 143     | 92,3      | 504   | 158     | 86,3      | 467    | 176  | 80,0      | 55        |
| N - SSN      | 8    | 660  | 110  | 113       | 627    | 120    | 108       | 593   | 131   | 102       | 557            | 143     | 95,5      | 521   | 159     | 89,3      | 483    | 177  | 82,8      | 55        |
|              | 9    | 681  | 111  | 117       | 647    | 121    | 111       | 612   | 132   | 105       | 579            | 144     | 99,2      | 539   | 160     | 92,4      | 500    | 178  | 85,7      | 55        |
|              | 10   | 704  | 112  | 121       | 669    | 122    | 115       | 631   | 133   | 108       | 594            | 146     | 102       | 557   | 160     | 95,5      | 516    | 180  | 88,5      | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidisseme | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau a | u cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | °C)  |           |
|---------------|------|------|------|-----------|--------|--------|-----------|--------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling       |      |      | 27   |           |        | 30     |           |        | 35     |           |        | 40     |           |       | 45      |           |        | 50   |           |
|               |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu (          | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|               | 5    | 607  | 104  | 104       | 590    | 108    | 101       | 560    | 118    | 95,9      | 528    | 129    | 90,4      | 497   | 142     | 85,0      | 461    | 158  | 78,9      |
|               | 6    | 630  | 105  | 108       | 612    | 110    | 105       | 583    | 119    | 100       | 549    | 130    | 94,0      | 515   | 144     | 88,3      | 481    | 159  | 82,5      |
| NI CCNI       | 7    | 652  | 106  | 112       | 634    | 111    | 109       | 601    | 120    | 103       | 569    | 131    | 97,5      | 534   | 145     | 91,6      | 498    | 160  | 85,4      |
| N - SSN       | 8    | 675  | 107  | 116       | 654    | 112    | 112       | 621    | 121    | 107       | 588    | 133    | 101       | 552   | 146     | 94,7      | 516    | 161  | 88,5      |
|               | 9    | 697  | 108  | 119       | 677    | 113    | 116       | 640    | 123    | 110       | 606    | 134    | 104       | 573   | 146     | 98,2      | 533    | 162  | 91,4      |
|               | 10   | 718  | 109  | 123       | 698    | 114    | 120       | 661    | 123    | 113       | 624    | 135    | 107       | 588   | 148     | 101       | 551    | 163  | 94,5      |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet ΔT levels, refer to the "ΔT correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.



| Compresseur Compressor                |                             |         | N              | SSN                   |
|---------------------------------------|-----------------------------|---------|----------------|-----------------------|
| Circuits frigorifiques                | Cooling circuits            | N°      | 2              | 2                     |
| Compresseurs                          | Compressors                 | N°      | 2              | 2                     |
| Étages de puissance                   | Capacity control            | %       | 25 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                             | ESSER (1)                   | -       | 6,4            | 43                    |
| IPLV (2)                              | IPLV <sup>(2)</sup>         | -       | 6,             | 50                    |
| Alimentation électrique Electrica     | l power supply              |         |                |                       |
| Puissance                             | Power                       | V/Ph/Hz | 400 ± 10       | % / 3 / 50            |
| Auxiliaires                           | Auxiliary                   | V/Ph/Hz | 24 - 230 ± 1   | 0 % / 1 / 50          |
| Évaporateur Evaporator                |                             |         |                |                       |
| Débit minimum                         | Min flow rate               | m³/h    | 29             | ,5                    |
| Débit maximum                         | Max flow rate               | m³/h    | 87             | ,4                    |
| Volume d'eau                          | Water volume                | 1       | 11:            | 3,5                   |
| Condenseur eau de tour <i>Tower v</i> | vater condenser             |         |                |                       |
| Quantité                              | Quantity                    | N°      | 2              | 2                     |
| Débit minimum (3)                     | Min condenser flow rate (3) | m³/h    | 15             | ,0                    |
| Débit maximum (3)                     | Max condenser flow rate (3) | m³/h    | 98             | ,9                    |
| Volume d'eau                          | Condenser water volume      | 1       | 41             | ,0                    |
| Condenseur eau de puits City wa       | ater condenser              |         |                |                       |
| Quantité                              | Quantity                    | N°      | 2              | 2                     |
| Débit minimum (3)                     | Min condenser flow rate (3) | m³/h    | 8,0            | 00                    |
| Débit maximum (3)                     | Max condenser flow rate (3) | m³/h    | 41             | ,2                    |
| Volume d'eau                          | Condenser water volume      | I       | 41             | ,0                    |

- Width 1200 1200 Largeur mm Longueur Length 3745 3795 mm 1850 Hauteur Height mm 1850 Poids Weight kg 2691 2851
- (1) Calculé selon les conditions EECCAC ; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

Dimensions et poids en service Dimensions and installed weight

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 130      | 212     | 395     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Bandes o   | l'octave - | Octave ba | ands (Hz) |          |      | Puissance | Pression  |
|-----|------|----------|------------|------------|-----------|-----------|----------|------|-----------|-----------|
|     | 63   | 125      | 250        | 500        | 1000      | 2000      | 4000     | 8000 | Power     | Pressure  |
|     |      | Niveau o | de puissar | nce sonore | e - Sound | power lev | el dB(A) |      | dB (A)    | dB (A)10m |
| N   | 45,1 | 59,2     | 81,4       | 86,2       | 91,0      | 87,5      | 80,8     | 69,0 | 94,0      | 66,0      |
| SSN | 39,1 | 53,2     | 75,4       | 80,2       | 85,0      | 81,5      | 74,8     | 63,0 | 88,0      | 60,0      |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance  $\pm$ 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula:  $\pm$ 4B(A)10m+Kdb.

# AQUARIUS plus 1402

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidisse | ement   |      | Te   | mpéra     | ture d | e sorti | ie de l'  | eau a | u conc | lenseu    | r - Oı | tlet w | ater c    | onden | ser ter | nperat    | ure (° | <b>C</b> ) |           |           |
|-------------|---------|------|------|-----------|--------|---------|-----------|-------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------------|-----------|-----------|
| Coolii      | ng      |      | 30   |           |        | 35      |           |       | 40     |           |        | 45     |           |       | 50      |           |        | 55         |           | t max.(*) |
|             |         | Pf   | Pa   | Fw        | Pf     | Pa      | Fw        | Pf    | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa         | Fw        | (°C)      |
|             | tu (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW)       | $(m^3/h)$ |           |
|             | 5       | 357  | 63,9 | 61,2      | 338    | 69,7    | 57,9      | 318   | 76,1   | 54,4      | 297    | 83,5   | 50,9      | 276   | 92,4    | 47,2      | 253    | 103        | 43,3      | 55        |
|             | 6       | 371  | 64,6 | 63,6      | 351    | 70,5    | 60,2      | 332   | 76,7   | 56,9      | 310    | 84,3   | 53,0      | 287   | 93,1    | 49,2      | 264    | 104        | 45,2      | 55        |
| NI CC       | 7       | 384  | 65,4 | 65,8      | 364    | 71,3    | 62,4      | 343   | 77,7   | 58,8      | 321    | 84,9   | 55,1      | 298   | 93,9    | 51,1      | 274    | 105        | 47,0      | 55        |
| N - SS      | N 8     | 397  | 66,1 | 68,0      | 376    | 72,0    | 64,5      | 355   | 78,5   | 60,8      | 332    | 85,8   | 56,9      | 309   | 94,7    | 52,9      | 284    | 105        | 48,7      | 55        |
|             | 9       | 410  | 66,8 | 70,3      | 388    | 72,8    | 66,5      | 366   | 79,3   | 62,7      | 343    | 86,6   | 58,8      | 319   | 95,1    | 54,8      | 294    | 106        | 50,4      | 55        |
|             | 10      | 422  | 67,5 | 72,4      | 400    | 73,6    | 68,7      | 377   | 80,1   | 64,7      | 353    | 87,6   | 60,6      | 329   | 96,3    | 56,4      | 303    | 107        | 52,0      | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

t max.(\*)

555555555555

| Refroidissement | t  |      | Te   | mpéra     | ture d | e sorti | ie de l'  | 'eau a | u conc | lenseu    | r - <i>Ou</i> | tlet w | ater co   | onden | ser ten | nperat    | ure (° | C)        |                     |
|-----------------|----|------|------|-----------|--------|---------|-----------|--------|--------|-----------|---------------|--------|-----------|-------|---------|-----------|--------|-----------|---------------------|
| Cooling         |    |      | 27   |           |        | 30      |           |        | 35     |           |               | 40     |           |       | 45      |           |        | <b>50</b> |                     |
|                 | Γ  | Pf   | Pa   | Fw        | Pf     | Pa      | Fw        | Pf     | Pa     | Fw        | Pf            | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa        | Fw                  |
| tu (°C          | C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)          | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW)      | (m <sup>3</sup> /h) |
|                 | 5  | 365  | 61,6 | 62,4      | 354    | 64,9    | 60,6      | 334    | 70,9   | 57,3      | 315           | 77,2   | 53,9      | 294   | 84,8    | 50,4      | 272    | 94,0      | 46,6                |
|                 | 6  | 378  | 62,3 | 64,8      | 367    | 65,7    | 62,9      | 348    | 71,6   | 59,6      | 328           | 78,0   | 56,2      | 306   | 85,6    | 52,4      | 283    | 94,7      | 48,5                |
| NI CCNI         | 7  | 392  | 63,1 | 67,1      | 380    | 66,6    | 65,1      | 360    | 72,4   | 61,8      | 339           | 78,8   | 58,2      | 317   | 86,3    | 54,3      | 294    | 95,5      | 50,4                |
| N - SSN         | 8  | 404  | 63,9 | 69,3      | 392    | 67,3    | 67,3      | 372    | 73,3   | 63,7      | 351           | 79,7   | 60,1      | 329   | 87,0    | 56,5      | 304    | 96,6      | 52,1                |
|                 | 9  | 418  | 64,5 | 71,7      | 404    | 68,1    | 69,3      | 383    | 74,1   | 65,7      | 361           | 80,8   | 61,9      | 338   | 88,2    | 58,0      | 315    | 96,9      | 54,0                |
| 1               | 0  | 430  | 65,4 | 73,7      | 418    | 68,8    | 71,6      | 396    | 74,8   | 67,9      | 372           | 81,6   | 63,8      | 348   | 89,3    | 59,7      | 326    | 97,6      | 56,0                |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet ΔT levels, refer to the "ΔT correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.

23



### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor          |                     |         | N             | SSN           |
|---------------------------------|---------------------|---------|---------------|---------------|
| Circuits frigorifiques          | Cooling circuits    | N°      |               | 2             |
| Compresseurs                    | Compressors         | N°      |               | 2             |
| Étages de puissance             | Capacity control    | %       | 25 ÷ 100 cont | nu continuous |
| ESSER (1)                       | ESSER (1)           | -       | 6,            | 14            |
| IPLV (2)                        | IPLV <sup>(2)</sup> | -       | 6,            | 21            |
| Alimentation électrique Electri | ical power supply   |         |               |               |
| Puissance                       | Power               | V/Ph/Hz | 400 ± 10      | %/3/50        |
| Auxiliaires                     | Auxiliary           | V/Ph/Hz | 24 - 230 ±    | 0 % / 1 / 50  |

| Auxiliaires            | Auxiliary     | V/Ph/Hz | 24 - 230 ± 10 % / 1 / 50 |
|------------------------|---------------|---------|--------------------------|
| Évaporateur Evaporator |               |         |                          |
| Débit minimum          | Min flow rate | m³/h    | 29,5                     |
|                        |               |         |                          |

| Débit minimum | Min flow rate | m <sup>3</sup> /h | 29,5  |  |
|---------------|---------------|-------------------|-------|--|
| Débit maximum | Max flow rate | m³/h              | 87,4  |  |
| Volume d'eau  | Water volume  | I                 | 113,5 |  |

|--|

| Quantité          | Quantity                    | N°   | 2    |
|-------------------|-----------------------------|------|------|
| Débit minimum (3) | Min condenser flow rate (3) | m³/h | 18,0 |
| Débit maximum (3) | Max condenser flow rate (3) | m³/h | 117  |
| Volume d'eau      | Condenser water volume      | I    | 65,8 |

### Condenseur eau de puits City water condenser

| Quantité                     | Quantity                    | N°   | 2    |
|------------------------------|-----------------------------|------|------|
| Débit minimum <sup>(3)</sup> | Min condenser flow rate (3) | m³/h | 9,00 |
| Débit maximum <sup>(3)</sup> | Max condenser flow rate (3) | m³/h | 49,0 |
| Volume d'eau                 | Condenser water volume      | 1    | 65,8 |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1200 | 1200 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 3745 | 3795 |
| Hauteur  | Height | mm | 1850 | 1850 |
| Poids    | Weight | kg | 2966 | 3126 |

(1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;

- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/ max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 136      | 222     | 455     |

FLI = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; FLA = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; ICF = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Puissance | Pression |           |      |      |      |       |          |
|-----|------|----------|-----------|----------|-----------|------|------|------|-------|----------|
|     | 63   | 125      | 250       | 500      | 1000      | 2000 | 4000 | 8000 | Power | Pressure |
|     |      | Niveau o |           | dB (A)   | dB (A)10m |      |      |      |       |          |
| N   | 45,4 | 58,9     | 80,8      | 86,8     | 91,2      | 86,8 | 80,1 | 68,6 | 94,0  | 66,0     |
| SSN | 39,4 | 52,9     | 74,8      | 80,8     | 85,2      | 80,8 | 74,1 | 62,6 | 88,0  | 60,0     |

| Distance (1) |     |
|--------------|-----|
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance +/- 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula: dB(A)L=dB(A)10m+Kdb.

# AQUARIUS plas 1502

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissem | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | u cond | lenseu    | r - Οι | ıtlet w | ater co   | onden | ser tei | nperat    | ure (° | °C)  |           | ] |           |
|--------------|------|------|------|-----------|--------|--------|-----------|-------|--------|-----------|--------|---------|-----------|-------|---------|-----------|--------|------|-----------|---|-----------|
| Cooling      |      |      | 30   |           |        | 35     |           |       | 40     |           |        | 45      |           |       | 50      |           |        | 55   |           |   | t max.(*) |
|              |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf     | Pa      | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |   | (°C)      |
| tu           | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |   |           |
|              | 5    | 376  | 68,2 | 64,3      | 356    | 74,3   | 61,1      | 335   | 81,0   | 57,3      | 313    | 88,8    | 53,5      | 289   | 97,9    | 49,5      | 263    | 109  | 45,1      |   | 55        |
|              | 6    | 390  | 68,8 | 66,9      | 370    | 74,9   | 63,4      | 349   | 81,7   | 59,8      | 325    | 89,5    | 55,8      | 301   | 98,6    | 51,6      | 275    | 109  | 47,1      |   | 55        |
| NI CCNI      | 7    | 404  | 69,4 | 69,3      | 384    | 75,6   | 65,7      | 361   | 82,5   | 61,9      | 338    | 90,3    | 57,9      | 313   | 99,3    | 53,6      | 287    | 110  | 49,1      |   | 55        |
| N - SSN      | 8    | 418  | 70,0 | 71,6      | 396    | 76,3   | 68,0      | 374   | 83,2   | 64,1      | 350    | 90,9    | 60,0      | 324   | 100     | 55,6      | 298    | 111  | 51,0      |   | 55        |
|              | 9    | 432  | 70,7 | 74,1      | 409    | 77,1   | 70,1      | 386   | 84,0   | 66,2      | 361    | 91,8    | 61,9      | 336   | 101     | 57,6      | 308    | 111  | 52,8      |   | 55        |
|              | 10   | 446  | 71,4 | 76,4      | 422    | 77,8   | 72,5      | 398   | 84,7   | 68,3      | 373    | 92,6    | 63,9      | 347   | 101     | 59,6      | 319    | 112  | 54,6      |   | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidisseme | ent           |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | u cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | °C)  |           |
|---------------|---------------|------|------|-----------|--------|--------|-----------|-------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling       |               | 27   |      |           |        | 30     |           |       | 35     |           | 40     |        |           | 45    |         |           |        |      |           |
|               |               | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu (          | (° <b>C</b> ) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|               | 5             | 384  | 65,5 | 65,8      | 373    | 68,9   | 63,9      | 354   | 75,0   | 60,6      | 332    | 81,9   | 56,9      | 310   | 89,7    | 53,1      | 287    | 98,9 | 49,1      |
|               | 6             | 399  | 66,1 | 68,3      | 387    | 69,6   | 66,4      | 367   | 75,8   | 62,9      | 346    | 82,5   | 59,3      | 322   | 90,5    | 55,2      | 298    | 100  | 51,1      |
| NI CCNI       | 7             | 413  | 66,8 | 70,8      | 401    | 70,3   | 68,7      | 380   | 76,5   | 65,2      | 358    | 83,4   | 61,4      | 335   | 91,2    | 57,4      | 310    | 100  | 53,2      |
| N - SSN       | 8             | 428  | 67,4 | 73,3      | 416    | 71,0   | 71,3      | 393   | 77,4   | 67,3      | 370    | 84,2   | 63,5      | 347   | 91,9    | 59,5      | 321    | 101  | 55,0      |
|               | 9             | 442  | 68,0 | 75,7      | 429    | 71,7   | 73,5      | 405   | 78,2   | 69,5      | 382    | 85,1   | 65,5      | 358   | 93,0    | 61,3      | 333    | 102  | 57,0      |
|               | 10            | 455  | 68,8 | 78,0      | 442    | 72,4   | 75,8      | 419   | 78,8   | 71,9      | 395    | 85,9   | 67,7      | 369   | 93,9    | 63,3      | 344    | 103  | 59,0      |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet ΔT levels, refer to the "ΔT correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.

25

Longueur

Hauteur

Poids



| Compresseur Compressor            |                                        |         | N              | SSN                   |  |  |  |  |
|-----------------------------------|----------------------------------------|---------|----------------|-----------------------|--|--|--|--|
| Circuits frigorifiques            | Cooling circuits                       | N°      | 2              | 2                     |  |  |  |  |
| Compresseurs                      | Compressors                            | N°      | 2              |                       |  |  |  |  |
| Étages de puissance               | Capacity control                       | %       | 25 ÷ 100 conti | nu c <i>ontinuous</i> |  |  |  |  |
| ESSER (1)                         | ESSER (1)                              | -       | 5,0            | 09                    |  |  |  |  |
| IPLV (2)                          | IPLV <sup>(2)</sup>                    | -       | 6,             | 14                    |  |  |  |  |
| Alimentation électrique Electrica | l power supply                         | ·       |                |                       |  |  |  |  |
| Puissance                         | Power                                  | V/Ph/Hz | 400 ± 10       | %/3/50                |  |  |  |  |
| Auxiliaires                       | Auxiliary                              | V/Ph/Hz | 24 - 230 ± 1   | 0 % / 1 / 50          |  |  |  |  |
| Évaporateur Evaporator            |                                        | •       |                |                       |  |  |  |  |
| Débit minimum                     | Min flow rate                          | m³/h    | 29             | ,5                    |  |  |  |  |
| Débit maximum                     | Max flow rate                          | m³/h    | 87             | 7,4                   |  |  |  |  |
| Volume d'eau                      | Water volume                           | I       | 11:            | 3,5                   |  |  |  |  |
| Condenseur eau de tour Tower v    | vater condenser                        |         |                |                       |  |  |  |  |
| Quantité                          | Quantity                               | N°      | 2              | 2                     |  |  |  |  |
| Débit minimum (3)                 | Min condenser flow rate (3)            | m³/h    | 18             | ,0                    |  |  |  |  |
| Débit maximum (3)                 | Max condenser flow rate (3)            | m³/h    | 11             | 7                     |  |  |  |  |
| Volume d'eau                      | Condenser water volume                 | I       | 65             | ,8                    |  |  |  |  |
| Condenseur eau de puits City wa   | ater condenser                         |         |                |                       |  |  |  |  |
| Quantité                          | Quantity                               | N°      | 2              | 2                     |  |  |  |  |
| Débit minimum (3)                 | Min condenser flow rate <sup>(3)</sup> | m³/h    | 9,0            | 00                    |  |  |  |  |
| Débit maximum (3)                 | Max condenser flow rate <sup>(3)</sup> | m³/h    | 49             | ,0                    |  |  |  |  |
| Volume d'eau                      | Condenser water volume                 | I       | 65             | ,8                    |  |  |  |  |
| Dimensions et poids en service    | Dimensions and installed weight        |         |                |                       |  |  |  |  |
| Largeur                           | Width                                  | mm      | 1200           | 1200                  |  |  |  |  |
|                                   |                                        |         |                |                       |  |  |  |  |

Weight (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;

Length

Height

- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/ max flows are the total value.

mm

mm

kg

3745

1850

2966

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 141      | 232     | 465     |

FLI = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; FLA = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; ICF = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Puissance | Pression |           |      |      |      |       |          |
|-----|------|----------|-----------|----------|-----------|------|------|------|-------|----------|
|     | 63   | 125      | 250       | 500      | 1000      | 2000 | 4000 | 8000 | Power | Pressure |
|     |      | Niveau ( |           | dB (A)   | dB (A)10m |      |      |      |       |          |
| N   | 45,6 | 58,6     | 80,1      | 87,3     | 91,4      | 86,0 | 79,1 | 68,2 | 94,0  | 66,0     |
| SSN | 39,6 | 52,6     | 74,1      | 81,3     | 85,4      | 80,0 | 73,1 | 62,2 | 88,0  | 60,0     |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

3795

1850

3126

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance +/- 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula: dB(A)L=dB(A)10m+Kdb.

### **PERFORMANCES - PERFORMANCE DATA**

### EAU DE TOUR - TOWER WATER

| Refroidisseme | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | u cond | lenseu    | r - <i>O</i> u | ıtlet w | ater co   | onden | ser ter | nperat    | ure (° | C)   |           |
|---------------|------|------|------|-----------|--------|--------|-----------|-------|--------|-----------|----------------|---------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling       |      |      | 30   |           | 35     |        | 40        |       | 45     |           | 50             |         |           | 55    |         |           |        |      |           |
|               |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf             | Pa      | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu (          | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)           | (kW)    | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|               | 5    | 401  | 72,9 | 68,7      | 381    | 79,3   | 65,3      | 357   | 86,6   | 61,2      | 333            | 94,9    | 57,0      | 307   | 104     | 52,5      | 278    | 115  | 47,6      |
|               | 6    | 417  | 73,4 | 71,4      | 395    | 80,0   | 67,7      | 372   | 87,2   | 63,7      | 347            | 95,5    | 59,4      | 320   | 105     | 54,8      | 290    | 116  | 49,7      |
| NI CCNI       | 7    | 432  | 74,0 | 74,0      | 410    | 80,5   | 70,2      | 385   | 87,9   | 66,0      | 360            | 96,3    | 61,6      | 333   | 106     | 57,0      | 303    | 117  | 51,9      |
| N - SSN       | 8    | 446  | 74,6 | 76,5      | 423    | 81,3   | 72,6      | 399   | 88,6   | 68,4      | 374            | 96,7    | 64,1      | 345   | 106     | 59,1      | 315    | 117  | 54,0      |
|               | 9    | 462  | 75,2 | 79,2      | 437    | 81,9   | 74,9      | 412   | 89,3   | 70,6      | 385            | 97,6    | 66,1      | 357   | 107     | 61,2      | 327    | 118  | 56,0      |
|               | 10   | 476  | 75,8 | 81,7      | 452    | 82,5   | 77,6      | 425   | 90,0   | 72,9      | 398            | 98,5    | 68,2      | 371   | 107     | 63,6      | 338    | 119  | 58,0      |

| t max.(*)<br>(°C) |
|-------------------|
| 55                |
| 55                |
| 55                |
| 55                |
| 55                |
| 55                |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidisseme | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau ai | u cond | denseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | (C)  |           |
|---------------|------|------|------|-----------|--------|--------|-----------|---------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling       |      |      | 27   |           |        | 30     |           |         | 35     |           | 40     |        | 45        |       |         |           | 50     |      |           |
|               |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf      | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu (          | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)    | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|               | 5    | 410  | 70,2 | 70,2      | 398    | 73,8   | 68,2      | 378     | 80,2   | 64,7      | 354    | 87,7   | 60,6      | 330   | 95,9    | 56,5      | 304    | 105  | 52,1      |
|               | 6    | 426  | 70,7 | 72,9      | 413    | 74,4   | 70,8      | 392     | 81,0   | 67,1      | 368    | 88,2   | 63,1      | 343   | 96,8    | 58,7      | 317    | 106  | 54,2      |
| NI CCNI       | 7    | 441  | 71,4 | 75,5      | 428    | 75,1   | 73,3      | 406     | 81,7   | 69,5      | 382    | 89,1   | 65,4      | 356   | 97,5    | 61,0      | 329    | 107  | 56,4      |
| N - SSN       | 8    | 456  | 72,0 | 78,2      | 444    | 75,7   | 76,1      | 419     | 82,4   | 71,9      | 395    | 89,9   | 67,7      | 370   | 97,8    | 63,4      | 341    | 108  | 58,5      |
|               | 9    | 471  | 72,6 | 80,8      | 458    | 76,3   | 78,5      | 432     | 83,3   | 74,1      | 408    | 90,6   | 69,9      | 381   | 99,1    | 65,3      | 353    | 109  | 60,5      |
|               | 10   | 486  | 73,2 | 83,3      | 472    | 77,0   | 80,9      | 447     | 83,8   | 76,7      | 422    | 91,3   | 72,3      | 393   | 100     | 67,5      | 367    | 109  | 62,9      |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

Tower water condenser  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.

Longueur

Hauteur

Poids



| Compresseur Compressor                |                                 |         | N               | SSN                   |
|---------------------------------------|---------------------------------|---------|-----------------|-----------------------|
| Circuits frigorifiques                | Cooling circuits                | N°      | 2               |                       |
| Compresseurs                          | Compressors                     | N°      | 2               |                       |
| Étages de puissance                   | Capacity control                | %       | 25 ÷ 100 contir | nu c <i>ontinuous</i> |
| ESSER (1)                             | ESSER <sup>(1)</sup>            | -       | 6,4             | <b>1</b> 1            |
| IPLV (2)                              | IPLV <sup>(2)</sup>             | -       | 6,4             | 17                    |
| Alimentation électrique Electrica     | al power supply                 |         |                 |                       |
| Puissance                             | Power                           | V/Ph/Hz | 400 ± 10 °      | % / 3 / 50            |
| Auxiliaires                           | Auxiliary                       | V/Ph/Hz | 24 - 230 ± 1    | 0 % / 1 / 50          |
| Évaporateur <i>Evaporator</i>         |                                 | •       |                 |                       |
| Débit minimum                         | Min flow rate                   | m³/h    | 29              | ,5                    |
| Débit maximum                         | Max flow rate                   | m³/h    | 94              | ,6                    |
| Volume d'eau                          | Water volume                    | I       | 11              | 4                     |
| Condenseur eau de tour <i>Tower</i> v | water condenser                 |         |                 |                       |
| Quantité                              | Quantity                        | N°      | 2               |                       |
| Débit minimum (3)                     | Min condenser flow rate (3)     | m³/h    | 22,             | ,0                    |
| Débit maximum (3)                     | Max condenser flow rate (3)     | m³/h    | 14              | 1                     |
| Volume d'eau                          | Condenser water volume          | 1       | 73,             | ,8                    |
| Condenseur eau de puits City wa       | ater condenser                  |         |                 |                       |
| Quantité                              | Quantity                        | N°      | 2               |                       |
| Débit minimum (3)                     | Min condenser flow rate (3)     | m³/h    | 11,             | .0                    |
| Débit maximum (3)                     | Max condenser flow rate (3)     | m³/h    | 58,             | ,9                    |
| Volume d'eau                          | Condenser water volume          | I       | 73,             | ,8                    |
| Dimensions et poids en service        | Dimensions and installed weight |         |                 |                       |
| Largeur                               | Width                           | mm      | 1200            | 1200                  |

Weight (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;

Length

Height

- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/ max flows are the total value.

mm

mm

3745

1850

3024

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 165      | 266     | 555     |

FLI = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; FLA = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; ICF = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Puissance  | Pression   |           |           |          |      |        |           |
|-----|------|----------|------------|------------|-----------|-----------|----------|------|--------|-----------|
|     | 63   | 125      | 250        | 500        | 1000      | 2000      | 4000     | 8000 | Power  | Pressure  |
|     |      | Niveau o | de puissar | nce sonore | e - Sound | power lev | el dB(A) |      | dB (A) | dB (A)10m |
| N   | 49,0 | 69,8     | 82,6       | 88,8       | 92,9      | 89,9      | 78,9     | 66,1 | 96,0   | 68,0      |
| SSN | 43,0 | 63,8     | 76,6       | 82,8       | 86,9      | 83,9      | 72,9     | 60,1 | 90,0   | 62,0      |

| Distance (1) |     |
|--------------|-----|
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

3795

1850

3184

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance +/- 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula: dB(A)L=dB(A)10m+Kdb.

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissement |      | Te   | mpéra     | ture d | e sorti | ie de l   | 'eau a | u cond | denseu    | r - <i>O</i> u | ıtlet w | ater c    | onden | ser tei | nperat    | ure (° | °C)  |           |          |
|-----------------|------|------|-----------|--------|---------|-----------|--------|--------|-----------|----------------|---------|-----------|-------|---------|-----------|--------|------|-----------|----------|
| Cooling         |      | 30   |           |        | 35      |           |        | 40     |           |                | 45      |           |       | 50      |           |        | 55   |           | t max.(* |
|                 | Pf   | Pa   | Fw        | Pf     | Pa      | Fw        | Pf     | Pa     | Fw        | Pf             | Pa      | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        | (°C)     |
| tu (°C)         | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)           | (kW)    | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |          |
| 5               | 466  | 84,0 | 79,8      | 442    | 91,3    | 75,8      | 416    | 99,1   | 71,2      | 389            | 108     | 66,6      | 361   | 119     | 61,9      | 331    | 132  | 56,7      | 55       |
| 6               | 483  | 85,0 | 82,8      | 458    | 92,2    | 78,5      | 432    | 100    | 74,0      | 405            | 109     | 69,3      | 376   | 120     | 64,4      | 345    | 133  | 59,1      | 55       |
| N CCN 7         | 500  | 85,9 | 85,7      | 475    | 93,1    | 81,4      | 448    | 101    | 76,7      | 420            | 110     | 72,0      | 390   | 121     | 66,9      | 360    | 134  | 61,6      | 55       |
| N - SSN 8       | 516  | 86,8 | 88,5      | 490    | 94,1    | 84,0      | 463    | 102    | 79,3      | 435            | 111     | 74,6      | 404   | 122     | 69,2      | 372    | 135  | 63,8      | 55       |
| 9               | 534  | 87,6 | 91,5      | 505    | 95,1    | 86,6      | 477    | 103    | 81,7      | 448            | 112     | 76,7      | 417   | 123     | 71,5      | 385    | 136  | 66,0      | 55       |
| 10              | 549  | 88,6 | 94,2      | 522    | 95,9    | 89,5      | 491    | 104    | 84,2      | 461            | 113     | 79,1      | 432   | 123     | 74,1      | 397    | 137  | 68,1      | 55       |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidisseme | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau a | u cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | °C)  |           |
|---------------|------|------|------|-----------|--------|--------|-----------|--------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling       |      | 27   |      | 30        |        |        | 35        |        | 40     |           |        | 45     |           |       | 50      |           |        |      |           |
|               |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu            | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|               | 5    | 476  | 80,8 | 81,6      | 463    | 84,8   | 79,3      | 440    | 92,0   | 75,3      | 413    | 100    | 70,8      | 387   | 109     | 66,2      | 359    | 120  | 61,4      |
|               | 6    | 495  | 81,5 | 84,8      | 481    | 85,8   | 82,3      | 456    | 92,9   | 78,1      | 429    | 101    | 73,5      | 402   | 110     | 68,9      | 373    | 121  | 64,0      |
| NI CCNI       | 7    | 512  | 82,5 | 87,7      | 497    | 86,7   | 85,2      | 472    | 94,0   | 80,9      | 445    | 102    | 76,2      | 416   | 111     | 71,4      | 387    | 122  | 66,4      |
| N - SSN       | 8    | 529  | 83,4 | 90,7      | 515    | 87,6   | 88,2      | 487    | 95,0   | 83,5      | 459    | 103    | 78,7      | 432   | 112     | 74,1      | 401    | 123  | 68,7      |
|               | 9    | 546  | 84,3 | 93,5      | 530    | 88,6   | 90,9      | 501    | 96,2   | 85,9      | 474    | 104    | 81,2      | 444   | 113     | 76,1      | 413    | 124  | 70,9      |
|               | 10   | 561  | 85,3 | 96,2      | 545    | 89,7   | 93,5      | 518    | 97,1   | 88,8      | 487    | 105    | 83,5      | 457   | 114     | 78,4      | 428    | 124  | 73,5      |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.



| Compresseur Compressor              |                                        |         | N              | SSN                   |
|-------------------------------------|----------------------------------------|---------|----------------|-----------------------|
| Circuits frigorifiques              | Cooling circuits                       | N°      | 2              | 2                     |
| Compresseurs                        | Compressors                            | N°      | 2              | 2                     |
| Étages de puissance                 | Capacity control                       | %       | 25 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                           | ESSER (1)                              | -       | 6,.            | 55                    |
| IPLV (2)                            | IPLV (2)                               | -       | 6,             | 61                    |
| Alimentation électrique Electric    | cal power supply                       |         |                |                       |
| Puissance                           | Power                                  | V/Ph/Hz | 400 ± 10       | % / 3 / 50            |
| Auxiliaires                         | Auxiliary                              | V/Ph/Hz | 24 - 230 ± 1   | 0 % / 1 / 50          |
| Évaporateur <i>Evaporator</i>       |                                        |         |                |                       |
| Débit minimum                       | Min flow rate                          | m³/h    | 47             | 7,0                   |
| Débit maximum                       | Max flow rate                          | m³/h    | 15             | 53                    |
| Volume d'eau                        | Water volume                           | I       | 18             | 34                    |
| Condenseur eau de tour <i>Tower</i> | water condenser                        |         |                |                       |
| Quantité                            | Quantity                               | N°      | 2              | 2                     |
| Débit minimum (3)                   | Min condenser flow rate <sup>(3)</sup> | m³/h    | 26             | 5,0                   |
| Débit maximum (3)                   | Max condenser flow rate (3)            | m³/h    | 16             | 59                    |
| Volume d'eau                        | Condenser water volume                 | I       | 83             | 3,0                   |
| Condenseur eau de puits City v      | vater condenser                        |         |                |                       |
| Quantité                            | Quantity                               | N°      | 2              | 2                     |
| Débit minimum (3)                   | Min condenser flow rate <sup>(3)</sup> | m³/h    | 13             | 3,0                   |
| Débit maximum (3)                   | Max condenser flow rate (3)            | m³/h    | 70             | ),6                   |
| Volume d'eau                        | Condenser water volume                 | I       | 83             | 3,0                   |
| Dimensions et poids en service      | Dimensions and installed weight        |         |                |                       |
| Largeur                             | Width                                  | mm      | 1200           | 1200                  |
| Longueur                            | Length                                 | mm      | 3745           | 3795                  |
| Hauteur                             | Height                                 | mm      | 1940           | 1940                  |
| Poids                               | Weight                                 | kg      | 3683           | 3843                  |

- (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 184      | 299     | 652     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Puissance  | Pression   |           |           |          |      |        |           |
|-----|------|----------|------------|------------|-----------|-----------|----------|------|--------|-----------|
|     | 63   | 125      | 250        | 500        | 1000      | 2000      | 4000     | 8000 | Power  | Pressure  |
|     |      | Niveau o | de puissar | nce sonore | e - Sound | power lev | el dB(A) |      | dB (A) | dB (A)10m |
| N   | 46,6 | 66,9     | 81,1       | 91,6       | 93,4      | 88,5      | 77,0     | 64,1 | 96,5   | 68,5      |
| SSN | 40,6 | 60,9     | 75,1       | 85,6       | 87,4      | 82,5      | 71,0     | 58,1 | 90,5   | 62,5      |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance  $\pm$ 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula:  $\pm$ 4B(A)10m+Kdb.

### K

AQUARIUS plus 2002

### Sone everg

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissemer | nt         | Température de sortie de l'eau au condenseur - Outlet water condenser temperature (°C) |      |           |      |      |           |      |      |           |      |      |           |      |      |           |      |      |           |
|----------------|------------|----------------------------------------------------------------------------------------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|
| Cooling        |            |                                                                                        | 30   |           |      | 35   |           |      | 40   |           |      | 45   |           |      | 50   |           |      | 55   |           |
|                | Γ          | Pf                                                                                     | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        |
| tu (°          | <b>C</b> ) | (kW)                                                                                   | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ |
|                | 5          | 518                                                                                    | 92,2 | 88,8      | 493  | 101  | 84,4      | 464  | 111  | 79,5      | 436  | 122  | 74,7      | 406  | 135  | 69,5      | 374  | 149  | 64,1      |
|                | 6          | 538                                                                                    | 92,9 | 92,2      | 511  | 102  | 87,6      | 484  | 112  | 82,8      | 453  | 123  | 77,7      | 422  | 135  | 72,4      | 390  | 150  | 66,8      |
| NI CCNI        | 7          | 557                                                                                    | 93,7 | 95,4      | 530  | 103  | 90,8      | 501  | 112  | 85,8      | 470  | 123  | 80,5      | 438  | 136  | 75,1      | 405  | 151  | 69,4      |
| N - SSN        | 8          | 575                                                                                    | 94,4 | 99        | 547  | 103  | 93,8      | 517  | 113  | 88,7      | 487  | 124  | 83,5      | 454  | 137  | 77,8      | 420  | 151  | 72,0      |
|                | 9          | 593                                                                                    | 95,1 | 102       | 564  | 104  | 96,7      | 534  | 114  | 91,5      | 502  | 125  | 86,0      | 469  | 138  | 80,4      | 434  | 152  | 74,4      |
|                | 10         | 612                                                                                    | 95,9 | 105       | 581  | 105  | 100       | 550  | 115  | 94,4      | 517  | 126  | 88,8      | 485  | 138  | 83,2      | 448  | 153  | 76,9      |

|   | t max.(*)<br>(°C) |   |
|---|-------------------|---|
| Ī | 55                | I |
|   | 55                | I |
|   | 55                | l |
|   | 55                |   |
|   | 55                | I |
| ١ | 55                | I |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidisse | ment   | Température de sortie de l'eau au condenseur - Outlet water condenser temperature (°C) |      |           |      |      |           |      |      |           |      |      |           |      |      |           |      |      |           |
|-------------|--------|----------------------------------------------------------------------------------------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|
| Coolin      | g      | 27                                                                                     |      | 30        |      |      | 35        |      | 40   |           | 45   |      |           | 50   |      |           |      |      |           |
|             |        | Pf                                                                                     | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        |
| t           | u (°C) | (kW)                                                                                   | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ |
|             | 5      | 530                                                                                    | 88,2 | 90,8      | 515  | 93,1 | 88,3      | 489  | 102  | 83,8      | 461  | 112  | 79,0      | 433  | 123  | 74,1      | 403  | 136  | 69,0      |
|             | 6      | 550                                                                                    | 88,9 | 94,2      | 535  | 94,0 | 91,6      | 508  | 103  | 87,0      | 480  | 113  | 82,2      | 450  | 124  | 77,1      | 419  | 137  | 71,8      |
| NI CCI      | 7      | 569                                                                                    | 89,8 | 97,5      | 553  | 94,9 | 94,7      | 526  | 104  | 90,1      | 497  | 114  | 85,2      | 466  | 125  | 79,9      | 435  | 138  | 74,5      |
| N - SSI     | 8      | 587                                                                                    | 90,6 | 101       | 571  | 95,7 | 97,9      | 543  | 105  | 93,0      | 513  | 115  | 88,0      | 483  | 126  | 82,7      | 449  | 139  | 77,0      |
|             | 9      | 605                                                                                    | 91,5 | 104       | 589  | 96,4 | 101       | 560  | 106  | 96,0      | 529  | 116  | 90,7      | 498  | 127  | 85,3      | 465  | 139  | 79,8      |
|             | 10     | 624                                                                                    | 92,3 | 107       | 607  | 97,4 | 104       | 576  | 106  | 98,8      | 545  | 116  | 93,5      | 512  | 128  | 87,9      | 480  | 140  | 82,4      |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

 $\Delta T$  condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at differing water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.



### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor                          |                  |                           | N                           | SSN |  |  |  |  |  |
|-------------------------------------------------|------------------|---------------------------|-----------------------------|-----|--|--|--|--|--|
| Circuits frigorifiques                          | Cooling circuits | N°                        | 2                           |     |  |  |  |  |  |
| Compresseurs                                    | Compressors      | N°                        | 2                           |     |  |  |  |  |  |
| Étages de puissance                             | Capacity control | %                         | 25 ÷ 100 continu continuous |     |  |  |  |  |  |
| ESSER (1)                                       | ESSER (1)        | -                         | 6,46                        |     |  |  |  |  |  |
| IPLV (2)                                        | IPLV (2)         | PLV <sup>(2)</sup> - 6,50 |                             |     |  |  |  |  |  |
| Alimentation électrique Electrical power supply |                  |                           |                             |     |  |  |  |  |  |
| Puissance                                       | Power            | V/Ph/Hz                   | 400 ± 10 % / 3 / 50         |     |  |  |  |  |  |

| Auxiliaires            | Auxiliary | V/Ph/Hz | 24 - 230 ± 10 % / 1 / 50 |
|------------------------|-----------|---------|--------------------------|
| Évaporateur Evaporator |           |         |                          |
|                        |           |         |                          |

| Débit minimum | Min flow rate | m³/h | 47,0 |
|---------------|---------------|------|------|
| Débit maximum | Max flow rate | m³/h | 153  |
| Volume d'eau  | Water volume  | I    | 184  |

Condenseur eau de tour Tower water condenser

| Quantité          | Quantity                    | N°   | 2    |
|-------------------|-----------------------------|------|------|
| Débit minimum (3) | Min condenser flow rate (3) | m³/h | 26,0 |
| Débit maximum (3) | Max condenser flow rate (3) | m³/h | 169  |
| Volume d'eau      | Condenser water volume      | I    | 83,0 |

Condenseur eau de puits City water condenser

| Quantité                     | Quantity                    | N°   | 2    |
|------------------------------|-----------------------------|------|------|
| Débit minimum <sup>(3)</sup> | Min condenser flow rate (3) | m³/h | 13,0 |
| Débit maximum <sup>(3)</sup> | Max condenser flow rate (3) | m³/h | 70,6 |
| Volume d'eau                 | Condenser water volume      | I    | 83,0 |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1200 | 1200 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 3745 | 3795 |
| Hauteur  | Height | mm | 1940 | 1940 |
| Poids    | Weight | kg | 3983 | 4143 |

- (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 202      | 332     | 685     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|                                                      |      |      | Bandes o | octave - | Octave ba | ands (Hz) |      |      | Puissance | Pression  |
|------------------------------------------------------|------|------|----------|----------|-----------|-----------|------|------|-----------|-----------|
|                                                      | 63   | 125  | 250      | 500      | 1000      | 2000      | 4000 | 8000 | Power     | Pressure  |
| Niveau de puissance sonore - Sound power level dB(A) |      |      |          |          |           |           |      |      | dB (A)    | dB (A)10m |
| N                                                    | 40,6 | 51,9 | 78,8     | 93,2     | 93,8      | 86,4      | 73,6 | 60,6 | 97,0      | 69,0      |
| SSN                                                  | 34,6 | 45,9 | 72,8     | 87,2     | 87,8      | 80,4      | 67,6 | 54,6 | 91,0      | 63,0      |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance  $\pm$ 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula:  $\pm$ 4B(A)10m+Kdb.

# AQUARIUS plus 2202

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissem | Refroidissement Température de sortie de l'eau au condenseur - Outlet water condenser temperature (°C) |      |      |           |      |      |           |      |      |           |      |      |           |      |      |           |      |      |           |           |
|--------------|--------------------------------------------------------------------------------------------------------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|-----------|
| Cooling      |                                                                                                        |      | 30   |           |      | 35   |           |      | 40   |           |      | 45   |           |      | 50   |           |      | 55   |           | t max.(*) |
|              |                                                                                                        | Pf   | Pa   | Fw        | (°C)      |
| tu           | (°C)                                                                                                   | (kW) | (kW) | $(m^3/h)$ |           |
|              | 5                                                                                                      | 557  | 101  | 95,5      | 531  | 111  | 91,0      | 501  | 123  | 85,9      | 471  | 137  | 80,7      | 439  | 151  | 75,2      | 406  | 167  | 69,6      | 55        |
|              | 6                                                                                                      | 578  | 101  | 99,1      | 550  | 112  | 94,3      | 521  | 124  | 89,2      | 490  | 137  | 83,9      | 457  | 152  | 78,3      | 423  | 168  | 72,5      | 55        |
| NI CCNI      | 7                                                                                                      | 598  | 102  | 102       | 570  | 112  | 97,7      | 540  | 124  | 92,5      | 507  | 138  | 86,8      | 474  | 153  | 81,3      | 440  | 169  | 75,3      | 55        |
| N - SSN      | 8                                                                                                      | 618  | 103  | 106       | 589  | 113  | 101       | 558  | 125  | 95,6      | 527  | 138  | 90,3      | 491  | 153  | 84,2      | 456  | 170  | 78,1      | 55        |
|              | 9                                                                                                      | 637  | 103  | 109       | 607  | 114  | 104       | 576  | 126  | 98,7      | 542  | 139  | 93,0      | 508  | 154  | 87,0      | 471  | 170  | 80,8      | 55        |
|              | 10                                                                                                     | 658  | 104  | 113       | 625  | 114  | 107       | 594  | 126  | 102       | 560  | 140  | 96,0      | 527  | 154  | 90,3      | 486  | 172  | 83,4      | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidissemer | t  | Température de sortie de l'eau au condenseur - Outlet water condenser temperature (°C) |      |           |      |      |           |      |      |           |      |      |           |      |      |           |      |      |                     |
|----------------|----|----------------------------------------------------------------------------------------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|---------------------|
| Cooling        |    |                                                                                        | 27   |           |      | 30   |           |      | 35   |           |      | 40   |           |      | 45   |           |      | 50   |                     |
|                |    | Pf                                                                                     | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw        | Pf   | Pa   | Fw                  |
| tu (°          | C) | (kW)                                                                                   | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | $(m^3/h)$ | (kW) | (kW) | (m <sup>3</sup> /h) |
|                | 5  | 569                                                                                    | 96,2 | 97,5      | 554  | 102  | 94,9      | 527  | 113  | 90,2      | 498  | 125  | 85,2      | 468  | 138  | 80,1      | 436  | 153  | 74,6                |
|                | 6  | 590                                                                                    | 96,9 | 101       | 574  | 103  | 98,4      | 546  | 113  | 93,6      | 516  | 126  | 88,4      | 485  | 139  | 83,2      | 453  | 154  | 77,6                |
| NI CCNI        | 7  | 610                                                                                    | 97,7 | 105       | 593  | 104  | 102       | 566  | 114  | 97,0      | 535  | 126  | 91,7      | 503  | 140  | 86,2      | 470  | 155  | 80,5                |
| N - SSN        | 8  | 629                                                                                    | 98,5 | 108       | 613  | 104  | 105       | 584  | 115  | 100       | 553  | 127  | 94,8      | 521  | 140  | 89,4      | 486  | 156  | 83,3                |
|                | 9  | 648                                                                                    | 99,4 | 111       | 634  | 105  | 109       | 602  | 116  | 103       | 570  | 128  | 97,8      | 537  | 141  | 92,1      | 502  | 156  | 86,2                |
|                | 0  | 669                                                                                    | 100  | 115       | 652  | 106  | 112       | 620  | 116  | 106       | 588  | 128  | 101       | 554  | 142  | 95,0      | 521  | 157  | 89,3                |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

 $\Delta T$  condenseur puits = 15 °C

Pour déterminer les performances, avec une ΔT entre l'entrée et la sortie de l'eau des échangeurs différente de la ΔT nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

Tower water condenser  $\Delta T = 5$  °C

*Well water condenser* =  $15 \, ^{\circ}C$ 

To calculate performances at diferring water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Values highlighted in grey refer to water flows beyond the accepted limits, and as such do not represent permissible working conditions. The values have been shown merely to allow data interpolation and, if desired, as an aid towards calculations with temperature differences other than 5 °C.

Volume d'eau

### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor           |                                        |         | N                           | SSN          |  |  |  |  |  |
|----------------------------------|----------------------------------------|---------|-----------------------------|--------------|--|--|--|--|--|
| Circuits frigorifiques           | Cooling circuits                       | N°      | 2                           |              |  |  |  |  |  |
| Compresseurs                     | Compressors                            | N°      | 2                           |              |  |  |  |  |  |
| Étages de puissance              | Capacity control                       | %       | 25 ÷ 100 continu continuous |              |  |  |  |  |  |
| ESSER (1)                        | ESSER (1)                              | -       | 5,9                         | 93           |  |  |  |  |  |
| IPLV (2)                         | IPLV <sup>(2)</sup>                    | -       | 5,9                         | 98           |  |  |  |  |  |
| Alimentation électrique Electric | cal power supply                       |         |                             |              |  |  |  |  |  |
| Puissance                        | Power                                  | V/Ph/Hz | 400 ± 10                    | % / 3 / 50   |  |  |  |  |  |
| Auxiliaires                      | Auxiliary                              | V/Ph/Hz | 24 - 230 ± 1                | 0 % / 1 / 50 |  |  |  |  |  |
| Évaporateur Evaporator           |                                        |         |                             |              |  |  |  |  |  |
| Débit minimum                    | Min flow rate                          | m³/h    | 47                          | ,0           |  |  |  |  |  |
| Débit maximum                    | Max flow rate                          | m³/h    | 15                          | 3            |  |  |  |  |  |
| Volume d'eau                     | Water volume                           | I       | 184                         |              |  |  |  |  |  |
| Condenseur eau de tour Tower     | water condenser                        |         |                             |              |  |  |  |  |  |
| Quantité                         | Quantity                               | N°      | 2                           |              |  |  |  |  |  |
| Débit minimum (3)                | Min condenser flow rate <sup>(3)</sup> | m³/h    | 28                          | ,0           |  |  |  |  |  |
| Débit maximum (3)                | Max condenser flow rate (3)            | m³/h    | 188                         |              |  |  |  |  |  |
| Volume d'eau                     | Condenser water volume                 | I       | 90                          | ,2           |  |  |  |  |  |
| Condenseur eau de puits City v   | vater condenser                        |         |                             |              |  |  |  |  |  |
| Quantité                         | Quantity                               | N°      | 2                           |              |  |  |  |  |  |
| Débit minimum (3)                | Min condenser flow rate <sup>(3)</sup> | m³/h    | 14,0                        |              |  |  |  |  |  |
| Débit maximum (3)                | Max condenser flow rate (3)            | m³/h    | 78                          | ,4           |  |  |  |  |  |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1200 | 1200 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 3745 | 3795 |
| Hauteur  | Height | mm | 1940 | 1940 |
| Poids    | Weight | kg | 4040 | 4200 |

- (1) Calculé selon les conditions EECCAC ; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;

Condenser water volume

(3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |  |  |  |  |
|----------|---------|---------|--|--|--|--|
| 224      | 370     | 796     |  |  |  |  |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|                                                      |      |      | Puissance | Pression |      |      |        |           |       |          |
|------------------------------------------------------|------|------|-----------|----------|------|------|--------|-----------|-------|----------|
|                                                      | 63   | 125  | 250       | 500      | 1000 | 2000 | 4000   | 8000      | Power | Pressure |
| Niveau de puissance sonore - Sound power level dB(A) |      |      |           |          |      |      | dB (A) | dB (A)10m |       |          |
| N                                                    | 51,2 | 56,2 | 80,4      | 89,6     | 96,4 | 89,5 | 76,0   | 62,4      | 98,0  | 70,0     |
| SSN                                                  | 45,2 | 50,2 | 74,4      | 83,6     | 90,4 | 83,5 | 70,0   | 56,4      | 92,0  | 64,0     |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

90,2

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

Sound power: determined on the basis of measurements taken in accordance with the standard ISO 3744. Sound pressure at 10 m: Average value obtained in free field on a reflective surface at a distance of 10 meters from the longer side of the machine and at height of 1.6 m from the unit support base. Values with tolerance  $\pm$ 2 dB. The sound levels refer to operation of the unit under full load in nominal conditions. (1) To calculate a different distance of the sound pressure level, use the formula:  $\pm$ 4B(A)10m+Kdb.

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissement      |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau a | u cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | <b>C</b> ) |           |           |
|----------------------|------|------|-----------|--------|--------|-----------|--------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------------|-----------|-----------|
| Cooling              |      | 30   |           |        | 35     |           |        | 40     |           |        | 45     |           |       | 50      |           |        | 55         |           | t max.(*) |
|                      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa         | Fw        | (°C)      |
| tu (°C)              | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW)       | $(m^3/h)$ |           |
| 5                    | 635  | 115  | 109       | 603    | 124    | 103       | 567    | 135    | 97,2      | 531    | 148    | 90,9      | 492   | 162     | 84,2      | 449    | 178        | 76,9      | 55        |
| 6                    | 659  | 116  | 113       | 626    | 126    | 107       | 589    | 137    | 101       | 552    | 149    | 94,6      | 512   | 164     | 87,8      | 470    | 180        | 80,6      | 55        |
| NI CCNI 7            | 682  | 118  | 117       | 648    | 127    | 111       | 612    | 138    | 105       | 573    | 151    | 98,2      | 532   | 165     | 91,1      | 490    | 181        | 83,9      | 55        |
| N - SSN <sub>8</sub> | 705  | 119  | 121       | 670    | 128    | 115       | 632    | 139    | 108       | 594    | 152    | 102       | 551   | 166     | 94,5      | 508    | 183        | 87,2      | 55        |
| 9                    | 726  | 120  | 125       | 691    | 130    | 118       | 653    | 140    | 112       | 613    | 153    | 105       | 571   | 168     | 97,8      | 527    | 184        | 90,3      | 55        |
| 10                   | 751  | 122  | 129       | 714    | 131    | 122       | 673    | 142    | 116       | 632    | 155    | 108       | 592   | 168     | 101       | 544    | 186        | 93,4      | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidissem | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | ı cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | °C)  |           |
|--------------|------|------|------|-----------|--------|--------|-----------|-------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling      |      |      | 27   |           |        | 30     |           |       | 35     |           |        | 40     |           |       | 45      |           |        | 50   |           |
|              |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu           | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|              | 5    | 649  | 111  | 111       | 631    | 116    | 108       | 597   | 126    | 102       | 563    | 137    | 96,4      | 526   | 150     | 90,0      | 486    | 164  | 83,3      |
|              | 6    | 672  | 113  | 115       | 654    | 118    | 112       | 621   | 127    | 106       | 583    | 138    | 100       | 547   | 151     | 93,7      | 507    | 166  | 86,9      |
| NI CCNI      | 7    | 696  | 114  | 119       | 677    | 119    | 116       | 643   | 128    | 110       | 608    | 139    | 104       | 567   | 153     | 97,2      | 526    | 167  | 90,2      |
| N - SSN      | 8    | 718  | 115  | 123       | 699    | 120    | 120       | 664   | 130    | 114       | 627    | 141    | 107       | 588   | 154     | 101       | 545    | 169  | 93,4      |
|              | 9    | 742  | 117  | 127       | 722    | 122    | 124       | 685   | 131    | 117       | 647    | 142    | 111       | 607   | 155     | 104       | 564    | 170  | 96,7      |
|              | 10   | 765  | 119  | 131       | 744    | 124    | 128       | 704   | 133    | 121       | 666    | 144    | 114       | 626   | 157     | 107       | 584    | 171  | 100       |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5 \, ^{\circ}C$ 

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet ΔT levels, refer to the "ΔT correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor              |                                        |         | N              | SSN                   |
|-------------------------------------|----------------------------------------|---------|----------------|-----------------------|
| Circuits frigorifiques              | Cooling circuits                       | N°      | 2              |                       |
| Compresseurs                        | Compressors                            | N°      | 2              |                       |
| Étages de puissance                 | Capacity control                       | %       | 25 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                           | ESSER (1)                              | -       | 6,3            | 36                    |
| IPLV (2)                            | IPLV <sup>(2)</sup>                    | -       | 6,4            | 43                    |
| Alimentation électrique Electric    | al power supply                        |         |                |                       |
| Puissance                           | Power                                  | V/Ph/Hz | 400 ± 10       | % / 3 / 50            |
| Auxiliaires                         | Auxiliary                              | V/Ph/Hz | 24 - 230 ± 1   | 0 % / 1 / 50          |
| Évaporateur Evaporator              |                                        | •       |                |                       |
| Débit minimum                       | Min flow rate                          | m³/h    | 43             | ,0                    |
| Débit maximum                       | Max flow rate                          | m³/h    | 15             | i3                    |
| Volume d'eau                        | Water volume                           | I       | 22             | 22                    |
| Condenseur eau de tour <i>Tower</i> | water condenser                        |         |                |                       |
| Quantité                            | Quantity                               | N°      | 2              |                       |
| Débit minimum (3)                   | Min condenser flow rate <sup>(3)</sup> | m³/h    | 32             | ,0                    |
| Débit maximum (3)                   | Max condenser flow rate (3)            | m³/h    | 21             | 6                     |
| Volume d'eau                        | Condenser water volume                 | I       | 109            | 9,0                   |
| Condenseur eau de puits City w      | ater condenser                         |         |                |                       |
| Quantité                            | Quantity                               | N°      | 2              | !                     |
| Débit minimum (3)                   | Min condenser flow rate <sup>(3)</sup> | m³/h    | 16             | ,0                    |
| Débit maximum (3)                   | Max condenser flow rate (3)            | m³/h    | 90             | ,2                    |
| Volume d'eau                        | Condenser water volume                 | I       | 109            | 9,0                   |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1200 | 1200 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 4295 | 4295 |
| Hauteur  | Height | mm | 1940 | 1940 |
| Poids    | Weight | kg | 4409 | 4569 |

- (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 240      | 395     | 849     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          |      | Puissance | Pression  |      |      |      |       |          |
|-----|------|----------|------|-----------|-----------|------|------|------|-------|----------|
|     | 63   | 125      | 250  | 500       | 1000      | 2000 | 4000 | 8000 | Power | Pressure |
|     |      | Niveau o |      | dB (A)    | dB (A)10m |      |      |      |       |          |
| N   | 55,4 | 57,8     | 89,2 | 92,0      | 96,9      | 89,5 | 75,0 | 61,4 | 99,0  | 71,0     |
| SSN | 49,4 | 51,8     | 83,2 | 86,0      | 90,9      | 83,5 | 69,0 | 55,4 | 93,0  | 65,0     |

| Distance (1) |     |
|--------------|-----|
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

### Sone evenda

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidisseme | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau a | u con | denseu    | r - Ou | ıtlet w | ater co   | onden | ser tei | nperat    | ure (° | C)   |           |   |
|---------------|------|------|------|-----------|--------|--------|-----------|--------|-------|-----------|--------|---------|-----------|-------|---------|-----------|--------|------|-----------|---|
| Cooling       |      |      | 30   |           |        | 35     |           |        | 40    |           |        | 45      |           |       | 50      |           |        | 55   |           | t |
|               |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa    | Fw        | Pf     | Pa      | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |   |
| tu (          | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)  | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |   |
|               | 5    | 672  | 121  | 115       | 639    | 131    | 109       | 601    | 143   | 103       | 564    | 157     | 96,5      | 524   | 173     | 89,8      | 482    | 191  | 82,6      |   |
|               | 6    | 697  | 122  | 119       | 662    | 132    | 113       | 626    | 144   | 107       | 586    | 158     | 100       | 546   | 174     | 93,5      | 503    | 193  | 86,3      |   |
| NI CCNI       | 7    | 722  | 123  | 124       | 686    | 134    | 118       | 648    | 145   | 111       | 608    | 159     | 104       | 567   | 175     | 97,1      | 524    | 194  | 89,7      |   |
| N - SSN       | 8    | 746  | 125  | 128       | 709    | 135    | 122       | 670    | 147   | 115       | 632    | 160     | 108       | 587   | 177     | 101       | 543    | 195  | 93,1      |   |
|               | 9    | 771  | 126  | 132       | 732    | 136    | 126       | 692    | 148   | 119       | 651    | 162     | 112       | 608   | 177     | 104       | 563    | 197  | 96,5      |   |
|               | 10   | 796  | 127  | 137       | 756    | 137    | 130       | 714    | 149   | 123       | 672    | 163     | 115       | 629   | 179     | 108       | 581    | 198  | 100       |   |

### t max.(\*) (°C) 55 55 55 55 55

### PERFORMANCES - PERFORMANCE DATA

### **EAU DE PUITS - WELL WATER**

| Refroidisseme | ent           |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau au | ı cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | °C)  |           |
|---------------|---------------|------|------|-----------|--------|--------|-----------|--------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling       |               |      | 27   |           |        | 30     |           |        | 35     |           |        | 40     |           |       | 45      |           |        | 50   |           |
|               |               | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu            | (° <b>C</b> ) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|               | 5             | 688  | 116  | 118       | 668    | 122    | 114       | 635    | 132    | 109       | 598    | 144    | 102       | 560   | 158     | 96        | 521    | 174  | 89        |
|               | 6             | 713  | 118  | 122       | 693    | 123    | 119       | 658    | 133    | 113       | 621    | 145    | 106       | 583   | 159     | 100       | 542    | 176  | 93        |
| NI CCNI       | 7             | 738  | 119  | 126       | 718    | 124    | 123       | 682    | 135    | 117       | 645    | 147    | 111       | 604   | 161     | 103       | 563    | 177  | 96        |
| N - SSN       | 8             | 764  | 120  | 131       | 742    | 126    | 127       | 705    | 136    | 121       | 666    | 148    | 114       | 627   | 162     | 107       | 583    | 179  | 100       |
|               | 9             | 789  | 122  | 135       | 767    | 127    | 132       | 727    | 137    | 125       | 688    | 149    | 118       | 646   | 163     | 111       | 603    | 180  | 103       |
|               | 10            | 813  | 123  | 139       | 791    | 129    | 136       | 752    | 139    | 129       | 709    | 151    | 122       | 666   | 165     | 114       | 626    | 180  | 107       |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5 \, ^{\circ}C$ 

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet ΔT levels, refer to the "ΔT correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor                       |                             |         | N              | SSN                   |
|----------------------------------------------|-----------------------------|---------|----------------|-----------------------|
| Circuits frigorifiques                       | Cooling circuits            | N°      | 2              | !                     |
| Compresseurs                                 | Compressors                 | N°      | 2              |                       |
| Étages de puissance                          | Capacity control            | %       | 25 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                                    | ESSER (1)                   | -       | 6,4            | 48                    |
| IPLV (2)                                     | IPLV (2)                    | -       | 6,             | 54                    |
| Alimentation électrique Electrical power     | r supply                    |         |                |                       |
| Puissance                                    | Power                       | V/Ph/Hz | 400 ± 10       | % / 3 / 50            |
| Auxiliaires                                  | Auxiliary                   | V/Ph/Hz | 24 - 230 ± 1   | 0 % / 1 / 50          |
| Évaporateur <i>Evaporator</i>                |                             |         |                |                       |
| Débit minimum                                | Min flow rate               | m³/h    | 58             | ,0                    |
| Débit maximum                                | Max flow rate               | m³/h    | 18             | 39                    |
| Volume d'eau                                 | Water volume                | 1       | 25             | 52                    |
| Condenseur eau de tour <i>Tower water co</i> | ondenser                    | ,       |                |                       |
| Quantité                                     | Quantity                    | N°      | 2              |                       |
| Débit minimum (3)                            | Min condenser flow rate (3) | m³/h    | 32             | ,0                    |
| Débit maximum <sup>(3)</sup>                 | Max condenser flow rate (3) | m³/h    | 21             | 6                     |
| Volume d'eau                                 | Condenser water volume      | I       | 109            | 9,0                   |
| Condenseur eau de puits City water con       | ndenser                     |         |                |                       |
| Quantité                                     | Quantity                    | N°      | 2              |                       |
| Débit minimum (3)                            | Min condenser flow rate (3) | m³/h    | 16             | ,0                    |
| Débit maximum <sup>(3)</sup>                 | Max condenser flow rate (3) | m³/h    | 90             | ,2                    |
| Volume d'eau                                 | Condenser water volume      | I       | 109            | 9,0                   |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1200 | 1200 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 3755 | 3795 |
| Hauteur  | Height | mm | 2000 | 2000 |
| Poids    | Weight | kg | 4509 | 4669 |

- (1) Calculé selon les conditions EECCAC ; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 256      | 419     | 873     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Bandes o | l'octave - | Octave ba | ands (Hz) |      |      | Puissance | Pression |
|-----|------|----------|----------|------------|-----------|-----------|------|------|-----------|----------|
|     | 63   | 125      | 250      | 500        | 1000      | 2000      | 4000 | 8000 | Power     | Pressure |
|     |      | Niveau o |          | dB (A)     | dB (A)10m |           |      |      |           |          |
| N   | 57,5 | 58,9     | 91,9     | 93,5       | 97,3      | 89,5      | 73,7 | 60,1 | 100       | 72,0     |
| SSN | 51,5 | 52,9     | 85,9     | 87,5       | 91,3      | 83,5      | 67,7 | 54,1 | 94,0      | 66,0     |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidisseme | nt  |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau a | u cond | lenseu    | r - <i>Ou</i> | tlet w | ater co   | onden | ser tei | nperat    | ure (° | °C)  |           |   |     |
|---------------|-----|------|------|-----------|--------|--------|-----------|--------|--------|-----------|---------------|--------|-----------|-------|---------|-----------|--------|------|-----------|---|-----|
| Cooling       |     |      | 30   |           |        | 35     |           |        | 40     |           |               | 45     |           |       | 50      |           |        | 55   |           | t | t m |
|               |     | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf            | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |   | (   |
| tu (          | °C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)          | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |   |     |
|               | 5   | 713  | 127  | 122       | 678    | 138    | 116       | 639    | 151    | 109       | 599           | 166    | 103       | 559   | 184     | 96        | 517    | 205  | 88,6      |   |     |
|               | 6   | 741  | 128  | 127       | 703    | 139    | 120       | 664    | 152    | 114       | 623           | 167    | 107       | 581   | 185     | 100       | 538    | 206  | 92,2      |   |     |
| NI CCNI       | 7   | 767  | 129  | 131       | 728    | 140    | 125       | 688    | 153    | 118       | 647           | 168    | 111       | 603   | 186     | 103       | 559    | 207  | 95,8      |   |     |
| N - SSN       | 8   | 793  | 130  | 136       | 753    | 141    | 129       | 712    | 154    | 122       | 671           | 169    | 115       | 625   | 187     | 107       | 579    | 208  | 99,3      |   |     |
|               | 9   | 818  | 131  | 140       | 777    | 142    | 133       | 734    | 155    | 126       | 691           | 171    | 118       | 646   | 188     | 111       | 600    | 210  | 103       |   |     |
|               | 10  | 846  | 132  | 145       | 801    | 144    | 137       | 758    | 157    | 130       | 713           | 172    | 122       | 670   | 189     | 115       | 619    | 211  | 106       |   |     |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidisseme | nt  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | u cond | lenseu    | r - <i>Ou</i> | tlet w | ater co   | onden | ser ter | nperat    | ure (° | <b>C</b> ) |           |
|---------------|-----|------|------|-----------|--------|--------|-----------|-------|--------|-----------|---------------|--------|-----------|-------|---------|-----------|--------|------------|-----------|
| Cooling       |     |      | 27   |           |        | 30     |           |       | 35     |           |               | 40     |           |       | 45      |           |        | 50         |           |
|               |     | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf            | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa         | Fw        |
| tu (°         | °C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)          | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW)       | $(m^3/h)$ |
|               | 5   | 730  | 122  | 125       | 709    | 128    | 121       | 673   | 139    | 115       | 635           | 152    | 109       | 596   | 167     | 102       | 555    | 186        | 95,0      |
|               | 6   | 757  | 123  | 130       | 736    | 129    | 126       | 698   | 140    | 120       | 658           | 154    | 113       | 619   | 169     | 106       | 577    | 187        | 98,9      |
| NI CCNI       | 7   | 784  | 125  | 134       | 762    | 130    | 130       | 723   | 142    | 124       | 685           | 154    | 117       | 641   | 170     | 110       | 599    | 188        | 103       |
| N - SSN       | 8   | 810  | 126  | 139       | 787    | 132    | 135       | 747   | 143    | 128       | 706           | 156    | 121       | 664   | 171     | 114       | 619    | 190        | 106       |
|               | 9   | 837  | 127  | 144       | 811    | 133    | 139       | 771   | 144    | 132       | 729           | 157    | 125       | 685   | 173     | 117       | 640    | 191        | 110       |
|               | 10  | 864  | 128  | 148       | 839    | 134    | 144       | 797   | 145    | 137       | 751           | 159    | 129       | 707   | 174     | 121       | 664    | 192        | 114       |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5 \, ^{\circ}C$ 

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet ΔT levels, refer to the "ΔT correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.



| Compresseur Compressor             |                                        |         | N              | SSN                   |
|------------------------------------|----------------------------------------|---------|----------------|-----------------------|
| Circuits frigorifiques             | Cooling circuits                       | N°      | 2              |                       |
| Compresseurs                       | Compressors                            | N°      | 2              |                       |
| Étages de puissance                | Capacity control                       | %       | 25 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                          | ESSER (1)                              | -       | 6,0            | 06                    |
| IPLV (2)                           | IPLV <sup>(2)</sup>                    | -       | 6,             | 10                    |
| Alimentation électrique Electrical | power supply                           |         |                |                       |
| Puissance                          | Power                                  | V/Ph/Hz | 400 ± 10       | % / 3 / 50            |
| Auxiliaires                        | Auxiliary                              | V/Ph/Hz | 24 - 230 ± 1   | 0 % / 1 / 50          |
| Évaporateur <i>Evaporator</i>      |                                        | •       |                |                       |
| Débit minimum                      | Min flow rate                          | m³/h    | 65             | ,0                    |
| Débit maximum                      | Max flow rate                          | m³/h    | 18             | 39                    |
| Volume d'eau                       | Water volume                           | I       | 29             | )5                    |
| Condenseur eau de tour Tower wa    | nter condenser                         |         |                |                       |
| Quantité                           | Quantity                               | N°      | 2              |                       |
| Débit minimum <sup>(3)</sup>       | Min condenser flow rate <sup>(3)</sup> | m³/h    | 40             | ,0                    |
| Débit maximum <sup>(3)</sup>       | Max condenser flow rate (3)            | m³/h    | 26             | 55                    |
| Volume d'eau                       | Condenser water volume                 | 1       | 126            | 5,4                   |
| Condenseur eau de puits City water | er condenser                           |         |                |                       |
| Quantité                           | Quantity                               | N°      | 2              | !                     |
| Débit minimum <sup>(3)</sup>       | Min condenser flow rate <sup>(3)</sup> | m³/h    | 20             | ,0                    |
| Débit maximum <sup>(3)</sup>       | Max condenser flow rate (3)            | m³/h    | 11             | 0                     |
| Volume d'eau                       | Condenser water volume                 | 1       | 126            | 5,4                   |
| Dimensions et poids en service Di  | imensions and installed weight         |         |                |                       |
| Largeur                            | Width                                  | mm      | 1200           | 1200                  |
| Longueur                           | Length                                 | mm      | 4745           | 4895                  |
| Hauteur                            | Height                                 | mm      | 2130           | 2130                  |
| Poids                              | Weight                                 | kg      | 5826           | 6036                  |

- (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 292      | 473     | 671     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Bandes d | l'octave - | Octave ba | ands (Hz) |      |      | Puissance | Pression |
|-----|------|----------|----------|------------|-----------|-----------|------|------|-----------|----------|
|     | 63   | 125      | 250      | 500        | 1000      | 2000      | 4000 | 8000 | Power     | Pressure |
|     |      | Niveau o | dB (A)   | dB (A)10m  |           |           |      |      |           |          |
| N   | 51,0 | 74,5     | 88,2     | 91,2       | 96,8      | 89,3      | 83,8 | 69,6 | 99,0      | 71,0     |
| SSN | 45,0 | 68,5     | 82,2     | 85,2       | 90,8      | 83,3      | 77,8 | 63,6 | 93,0      | 65,0     |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissen | nent   |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau ai | u cond | denseu    | r - <i>O</i> u | tlet w | ater co   | onden | ser tei | nperat    | ure (° | °C)  |           |           |
|--------------|--------|------|------|-----------|--------|--------|-----------|---------|--------|-----------|----------------|--------|-----------|-------|---------|-----------|--------|------|-----------|-----------|
| Cooling      | -      |      | 30   |           |        | 35     |           |         | 40     |           |                | 45     |           |       | 50      |           |        | 55   |           | t max.(*) |
|              |        | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf      | Pa     | Fw        | Pf             | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        | (°C)      |
| tu           | ı (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)    | (kW)   | $(m^3/h)$ | (kW)           | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |           |
|              | 5      | 828  | 150  | 142       | 787    | 164    | 135       | 741     | 179    | 127       | 692            | 196    | 119       | 641   | 215     | 110       | 584    | 237  | 100       | 55        |
|              | 6      | 860  | 152  | 147       | 817    | 165    | 140       | 771     | 180    | 132       | 720            | 197    | 123       | 667   | 216     | 114       | 612    | 238  | 105       | 55        |
| NI CCN       | 7      | 891  | 153  | 153       | 847    | 166    | 145       | 798     | 181    | 137       | 746            | 198    | 128       | 693   | 218     | 119       | 637    | 240  | 109       | 55        |
| N - SSN      | 8      | 921  | 154  | 158       | 875    | 168    | 150       | 827     | 183    | 142       | 777            | 200    | 133       | 719   | 219     | 123       | 660    | 242  | 113       | 55        |
|              | 9      | 951  | 155  | 163       | 904    | 169    | 155       | 853     | 184    | 146       | 801            | 201    | 137       | 744   | 220     | 128       | 684    | 243  | 117       | 55        |
|              | 10     | 983  | 156  | 169       | 933    | 170    | 160       | 881     | 186    | 151       | 826            | 203    | 142       | 773   | 222     | 133       | 708    | 245  | 121       | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidissem | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | ı cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | (C)  |           |
|--------------|------|------|------|-----------|--------|--------|-----------|-------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling      |      |      | 27   |           |        | 30     |           |       | 35     |           |        | 40     |           |       | 45      |           |        | 50   |           |
|              |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu           | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|              | 5    | 848  | 144  | 145       | 825    | 151    | 141       | 785   | 165    | 134       | 737    | 180    | 126       | 689   | 197     | 118       | 637    | 216  | 109       |
|              | 6    | 880  | 145  | 151       | 855    | 153    | 147       | 812   | 166    | 139       | 767    | 181    | 131       | 717   | 198     | 123       | 665    | 217  | 114       |
| NI CCNI      | 7    | 911  | 147  | 156       | 886    | 154    | 152       | 841   | 168    | 144       | 793    | 183    | 136       | 744   | 200     | 127       | 690    | 219  | 118       |
| N - SSN      | 8    | 943  | 148  | 162       | 914    | 156    | 157       | 870   | 169    | 149       | 821    | 185    | 141       | 772   | 201     | 132       | 714    | 221  | 122       |
|              | 9    | 973  | 149  | 167       | 947    | 157    | 162       | 897   | 171    | 154       | 847    | 186    | 145       | 794   | 204     | 136       | 739    | 222  | 127       |
|              | 10   | 1003 | 150  | 172       | 976    | 158    | 167       | 928   | 172    | 159       | 873    | 188    | 150       | 820   | 205     | 141       | 768    | 223  | 132       |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

 $\Delta T$  condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at differing water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Longueur

Hauteur

Poids

### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor                   |                             |         | N              | SSN                   |
|------------------------------------------|-----------------------------|---------|----------------|-----------------------|
| Circuits frigorifiques                   | Cooling circuits            | N°      | 2              | 2                     |
| Compresseurs                             | Compressors                 | N°      | 2              | 2                     |
| Étages de puissance                      | Capacity control            | %       | 25 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                                | ESSER (1)                   | -       | 6,             | 42                    |
| IPLV (2)                                 | IPLV (2)                    | -       | 6,             | 47                    |
| Alimentation électrique Electrical power | supply                      |         |                |                       |
| Puissance                                | Power                       | V/Ph/Hz | 400 ± 10       | % / 3 / 50            |
| Auxiliaires                              | Auxiliary                   | V/Ph/Hz | 24 - 230 ± 1   | 0 % / 1 / 50          |
| Évaporateur Evaporator                   |                             |         |                |                       |
| Débit minimum                            | Min flow rate               | m³/h    | 63             | ,0                    |
| Débit maximum                            | Max flow rate               | m³/h    | 23             | 32                    |
| Volume d'eau                             | Water volume                | I       | 46             | 52                    |
| Condenseur eau de tour Tower water co    | ndenser                     |         |                |                       |
| Quantité                                 | Quantity                    | N°      | 2              | 2                     |
| Débit minimum <sup>(3)</sup>             | Min condenser flow rate (3) | m³/h    | 42             | ,0                    |
| Débit maximum <sup>(3)</sup>             | Max condenser flow rate (3) | m³/h    | 28             | 33                    |
| Volume d'eau                             | Condenser water volume      | I       | 13             | 9,4                   |
| Condenseur eau de puits City water con   | denser                      |         |                |                       |
| Quantité                                 | Quantity                    | N°      | 2              | 2                     |
| Débit minimum <sup>(3)</sup>             | Min condenser flow rate (3) | m³/h    | 21             | ,0                    |
| Débit maximum <sup>(3)</sup>             | Max condenser flow rate (3) | m³/h    | 11             | 8                     |
| Volume d'eau                             | Condenser water volume      | I       | 13             | 9,4                   |
| Dimensions et poids en service Dimensi   | ons and installed weight    |         |                |                       |
| Largeur                                  | Width                       | mm      | 1200           | 1200                  |

Weight (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;

Length

Height

- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/ max flows are the total value.

mm

mm

4845

2200

6539

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 317      | 510     | 700     |

FLI = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; FLA = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; ICF = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |                                                  |          | Bandes o   | l'octave - | Octave ba | ands (Hz) |      |      | Puissance | Pression |  |
|-----|--------------------------------------------------|----------|------------|------------|-----------|-----------|------|------|-----------|----------|--|
|     | 63   125   250   500   1000   2000   4000   8000 |          |            |            |           |           |      |      |           | Pressure |  |
|     |                                                  | Niveau o | de puissar |            | dB (A)    | dB (A)10m |      |      |           |          |  |
| N   | 49,2                                             | 73,1     | 90,7       | 92,0       | 96,0      | 89,8      | 83,1 | 70,2 | 99,0      | 71,0     |  |
| SSN | 43,2                                             | 67,1     | 93,0       | 65,0       |           |           |      |      |           |          |  |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

4895

2200

6749

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissem | ent           |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau a | u cond | lenseu    | r - Ou | ıtlet w | ater co   | onden | ser tei | nperat    | ure (° | °C)  |           |           |
|--------------|---------------|------|------|-----------|--------|--------|-----------|-------|--------|-----------|--------|---------|-----------|-------|---------|-----------|--------|------|-----------|-----------|
| Cooling      |               |      | 30   |           |        | 35     |           |       | 40     |           |        | 45      |           |       | 50      |           |        | 55   |           | t max.(*) |
|              |               | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf    | Pa     | Fw        | Pf     | Pa      | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        | (°C)      |
| tu           | (° <b>C</b> ) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)   | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |           |
|              | 5             | 893  | 161  | 153       | 850    | 176    | 146       | 800   | 194    | 137       | 751    | 213     | 129       | 697   | 235     | 119       | 641    | 260  | 110       | 55        |
|              | 6             | 927  | 162  | 159       | 881    | 177    | 151       | 833   | 195    | 143       | 780    | 215     | 134       | 726   | 237     | 124       | 669    | 261  | 115       | 55        |
| NI CCNI      | 7             | 960  | 163  | 164       | 913    | 178    | 156       | 863   | 196    | 148       | 809    | 216     | 139       | 754   | 238     | 129       | 696    | 263  | 119       | 55        |
| N - SSN      | 8             | 991  | 164  | 170       | 944    | 180    | 162       | 893   | 197    | 153       | 841    | 217     | 144       | 781   | 240     | 134       | 721    | 264  | 124       | 55        |
|              | 9             | 1024 | 165  | 176       | 974    | 181    | 167       | 922   | 199    | 158       | 867    | 219     | 149       | 809   | 240     | 139       | 747    | 266  | 128       | 55        |
|              | 10            | 1057 | 166  | 181       | 1004   | 182    | 172       | 951   | 200    | 163       | 894    | 220     | 153       | 840   | 241     | 144       | 773    | 267  | 133       | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidisseme | nt  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau au | ı cond | lenseu              | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | (C)  |           |
|---------------|-----|------|------|-----------|--------|--------|-----------|--------|--------|---------------------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling       |     |      | 27   |           |        | 30     |           |        | 35     |                     |        | 40     |           |       | 45      |           |        | 50   |           |
|               |     | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw                  | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu (          | °C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | (m <sup>3</sup> /h) | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|               | 5   | 911  | 154  | 156       | 887    | 163    | 152       | 843    | 179    | 144                 | 795    | 196    | 136       | 743   | 216     | 127       | 691    | 238  | 118       |
|               | 6   | 946  | 155  | 162       | 920    | 164    | 158       | 874    | 180    | 150                 | 825    | 198    | 141       | 774   | 217     | 133       | 718    | 240  | 123       |
| NI CCNI       | 7   | 978  | 156  | 168       | 952    | 165    | 163       | 906    | 181    | 155                 | 857    | 199    | 147       | 801   | 219     | 137       | 746    | 241  | 128       |
| N - SSN       | 8   | 1010 | 158  | 173       | 983    | 167    | 168       | 936    | 182    | 160                 | 884    | 200    | 152       | 832   | 220     | 143       | 773    | 243  | 133       |
|               | 9   | 1044 | 159  | 179       | 1014   | 168    | 174       | 965    | 184    | 165                 | 914    | 202    | 157       | 858   | 222     | 147       | 799    | 244  | 137       |
|               | 10  | 1077 | 160  | 185       | 1046   | 169    | 179       | 998    | 185    | 171                 | 941    | 203    | 161       | 885   | 224     | 152       | 830    | 245  | 142       |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet ΔT levels, refer to the "ΔT correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

Hauteur

Poids

### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor             |                                |                   | N              | SSN                   |
|------------------------------------|--------------------------------|-------------------|----------------|-----------------------|
| Circuits frigorifiques             | Cooling circuits               | N°                | 2              | 2                     |
| Compresseurs                       | Compressors                    | N°                |                | 2                     |
| Étages de puissance                | Capacity control               | %                 | 25 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                          | ESSER (1)                      | -                 | 6,             | 49                    |
| IPLV (2)                           | IPLV (2)                       | -                 | 6,             | 53                    |
| Alimentation électrique Electrical | power supply                   |                   |                |                       |
| Puissance                          | Power                          | V/Ph/Hz           | 400 ± 10       | %/3/50                |
| Auxiliaires                        | Auxiliary                      | V/Ph/Hz           | 24 - 230 ± 1   | 0 % / 1 / 50          |
| Évaporateur <i>Evaporator</i>      |                                |                   |                |                       |
| Débit minimum                      | Min flow rate                  | m³/h              | 63             | 3,0                   |
| Débit maximum                      | Max flow rate                  | m³/h              | 23             | 32                    |
| Volume d'eau                       | Water volume                   | I                 | 46             | 52                    |
| Condenseur eau de tour Tower wa    | ater condenser                 |                   |                |                       |
| Quantité                           | Quantity                       | N°                | 2              | 2                     |
| Débit minimum <sup>(3)</sup>       | Min condenser flow rate (3)    | m <sup>3</sup> /h | 42             | 2,0                   |
| Débit maximum (3)                  | Max condenser flow rate (3)    | m <sup>3</sup> /h | 28             | 33                    |
| Volume d'eau                       | Condenser water volume         | 1                 | 13             | 9,4                   |
| Condenseur eau de puits City wat   | er condenser                   |                   |                |                       |
| Quantité                           | Quantity                       | N°                | 2              | 2                     |
| Débit minimum <sup>(3)</sup>       | Min condenser flow rate (3)    | m³/h              | 21             | ,0                    |
| Débit maximum (3)                  | Max condenser flow rate (3)    | m³/h              | 1              | 18                    |
| Volume d'eau                       | Condenser water volume         | Ι                 | 13             | 9,4                   |
| Dimensions et poids en service D   | imensions and installed weight |                   |                |                       |
| Largeur                            | Width                          | mm                | 1200           | 1200                  |
| Longueur                           | Length                         | mm                | 4860           | 4910                  |

Weight (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;

Height

- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/ max flows are the total value.

mm

2200

6539

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 342      | 547     | 737     |

FLI = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; FLA = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; ICF = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |                                                      |      | Bandes o | l'octave - | Octave ba | ands (Hz) |      |      | Puissance | Pression |  |
|-----|------------------------------------------------------|------|----------|------------|-----------|-----------|------|------|-----------|----------|--|
|     | 63   125   250   500   1000   2000   4000   8000     |      |          |            |           |           |      |      | Power     | Pressure |  |
|     | Niveau de puissance sonore - Sound power level dB(A) |      |          |            |           |           |      |      |           |          |  |
| N   | 46,0                                                 | 70,8 | 92,3     | 92,6       | 95,0      | 90,3      | 82,2 | 70,7 | 99,0      | 71,0     |  |
| SSN | 40,0 64,8 86,3 86,6 89,0 84,3 76,2 64,7              |      |          |            |           |           |      |      |           | 65,0     |  |

| Distance ( | 1)  |
|------------|-----|
| Distance ( | 1)  |
| L (m)      | KdB |
| 1          | 15  |
| 3          | 10  |
| 5          | 6   |
| 10         | 0   |

2200

6749

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| I | Refroidissemen | t  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau au | ı con | lenseu    | r - Ou | tlet w | ater co   | onden | ser tei | nperat    | ure (° | <b>(C</b> ) |           |           |
|---|----------------|----|------|------|-----------|--------|--------|-----------|--------|-------|-----------|--------|--------|-----------|-------|---------|-----------|--------|-------------|-----------|-----------|
|   | Cooling        |    |      | 30   |           |        | 35     |           |        | 40    |           |        | 45     |           |       | 50      |           |        | 55          |           | t max.(*) |
|   |                |    | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa    | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa          | Fw        | (°C)      |
|   | tu (°0         | C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)  | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW)        | $(m^3/h)$ |           |
|   |                | 5  | 952  | 171  | 163       | 908    | 189    | 155       | 857    | 209   | 147       | 805    | 232    | 138       | 750   | 257     | 128       | 694    | 284         | 119       | 55        |
|   |                | 6  | 988  | 172  | 169       | 940    | 190    | 161       | 890    | 210   | 152       | 836    | 233    | 143       | 780   | 258     | 134       | 723    | 285         | 124       | 55        |
|   | NI CCNI        | 7  | 1022 | 173  | 175       | 974    | 191    | 167       | 922    | 212   | 158       | 866    | 234    | 148       | 809   | 259     | 139       | 751    | 286         | 129       | 55        |
|   | N - SSN        | 8  | 1055 | 174  | 181       | 1006   | 192    | 172       | 953    | 213   | 163       | 900    | 235    | 154       | 838   | 261     | 144       | 777    | 288         | 133       | 55        |
|   |                | 9  | 1092 | 175  | 187       | 1038   | 193    | 178       | 983    | 214   | 169       | 927    | 236    | 159       | 867   | 261     | 149       | 804    | 290         | 138       | 55        |
|   | 1              | 0  | 1124 | 177  | 193       | 1069   | 195    | 183       | 1015   | 215   | 174       | 956    | 238    | 164       | 900   | 262     | 154       | 831    | 291         | 143       | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidisseme | ent           |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau au | ı cond | lenseu    | r - Ou | tlet w | ater co   | onden | ser ter | nperat    | ure (° | °C)  |           |
|---------------|---------------|------|------|-----------|--------|--------|-----------|--------|--------|-----------|--------|--------|-----------|-------|---------|-----------|--------|------|-----------|
| Cooling       |               |      | 27   |           |        | 30     |           |        | 35     |           |        | 40     |           | 45    |         |           |        |      |           |
| . (06)        |               | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf    | Pa      | Fw        | Pf     | Pa   | Fw        |
| tu            | (° <b>C</b> ) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)  | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |
|               | 5             | 971  | 164  | 166       | 945    | 174    | 162       | 899    | 192    | 154       | 849    | 212    | 145       | 796   | 236     | 136       | 743    | 260  | 127       |
|               | 6             | 1007 | 165  | 173       | 980    | 175    | 168       | 931    | 194    | 160       | 881    | 214    | 151       | 829   | 236     | 142       | 771    | 262  | 132       |
| NI CCNI       | 7             | 1041 | 166  | 178       | 1014   | 176    | 174       | 966    | 194    | 165       | 917    | 214    | 157       | 858   | 238     | 147       | 801    | 263  | 137       |
| N - SSN       | 8             | 1075 | 168  | 184       | 1046   | 178    | 179       | 997    | 196    | 171       | 943    | 216    | 162       | 890   | 239     | 153       | 830    | 265  | 142       |
|               | 9             | 1111 | 169  | 190       | 1079   | 179    | 185       | 1027   | 197    | 176       | 974    | 217    | 167       | 917   | 241     | 157       | 856    | 267  | 147       |
|               | 10            | 1145 | 170  | 196       | 1114   | 180    | 191       | 1062   | 198    | 182       | 1003   | 219    | 172       | 945   | 242     | 162       | 889    | 266  | 152       |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

Tower water condenser  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.



### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor        |                     |         | N              | SSN                   |
|-------------------------------|---------------------|---------|----------------|-----------------------|
| Circuits frigorifiques        | Cooling circuits    | N°      | 2              | 2                     |
| Compresseurs                  | Compressors         | N°      | 2              | 2                     |
| Étages de puissance           | Capacity control    | %       | 25 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                     | ESSER (1)           | -       | 5,             | 87                    |
| IPLV (2)                      | IPLV <sup>(2)</sup> | -       | 5,             | 92                    |
| Alimentation électrique Elect | rical power supply  |         |                |                       |
| Puissance                     | Power               | V/Ph/Hz | 400 ± 10       | %/3/50                |

| 1 dissairee                   | Tower     | V/1 11/1 1Z | 400 = 10 /0/ 3 / 30      |
|-------------------------------|-----------|-------------|--------------------------|
| Auxiliaires                   | Auxiliary | V/Ph/Hz     | 24 - 230 ± 10 % / 1 / 50 |
| Évaporateur <i>Evaporator</i> |           |             |                          |

| Débit minimum | Min flow rate | m³/h | 86,0 |
|---------------|---------------|------|------|
| Débit maximum | Max flow rate | m³/h | 278  |
| Volume d'eau  | Water volume  | I    | 406  |

Condenseur eau de tour Tower water condenser

| Quantité          | Quantity                    | N°   | 2     |
|-------------------|-----------------------------|------|-------|
| Débit minimum (3) | Min condenser flow rate (3) | m³/h | 46,0  |
| Débit maximum (3) | Max condenser flow rate (3) | m³/h | 311   |
| Volume d'eau      | Condenser water volume      | I    | 153,4 |

Condenseur eau de puits City water condenser

| Quantité  | Quantity                             | N°                             | 2     |  |
|-----------|--------------------------------------|--------------------------------|-------|--|
| Débit mir | imum <sup>(3)</sup> Min condenser fi | ow rate (3) m <sup>3</sup> /h  | 23,0  |  |
| Débit ma  | rimum <sup>(3)</sup> Max condenser f | low rate (3) m <sup>3</sup> /h | 129   |  |
| Volume o  | eau Condenser water                  | volume I                       | 153,4 |  |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1200 | 1200 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 4760 | 4910 |
| Hauteur  | Height | mm | 2250 | 2250 |
| Poids    | Weight | kg | 6953 | 7163 |

- (1) Calculé selon les conditions EECCAC; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 383      | 623     | 896     |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |      | Puissance | Pression  |      |      |      |      |       |          |
|-----|------|------|-----------|-----------|------|------|------|------|-------|----------|
|     | 63   | 125  | 250       | 500       | 1000 | 2000 | 4000 | 8000 | Power | Pressure |
|     |      |      | dB (A)    | dB (A)10m |      |      |      |      |       |          |
| N   | 49,9 | 70,2 | 93,8      | 94,3      | 95,2 | 92,1 | 73,3 | 61,9 | 100   | 72,0     |
| SSN | 43,9 | 64,2 | 87,8      | 88,3      | 89,2 | 86,1 | 67,3 | 55,9 | 94,0  | 66,0     |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidissem | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau aı | ı con | denseu    | r - Ou | tlet w | ater co   | ondens | ser tei | nperat    | ure (° | °C)  |           |           |
|--------------|------|------|------|-----------|--------|--------|-----------|---------|-------|-----------|--------|--------|-----------|--------|---------|-----------|--------|------|-----------|-----------|
| Cooling      |      |      | 30   |           |        | 35     |           |         | 40    |           |        | 45     |           |        | 50      |           |        | 55   |           | t max.(*) |
|              |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf      | Pa    | Fw        | Pf     | Pa     | Fw        | Pf     | Pa      | Fw        | Pf     | Pa   | Fw        | (°C)      |
| tu           | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)    | (kW)  | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |           |
|              | 5    | 1091 | 198  | 187       | 1037   | 215    | 178       | 973     | 234   | 167       | 910    | 255    | 156       | 842    | 280     | 144       | 769    | 308  | 132       | 55        |
|              | 6    | 1132 | 201  | 194       | 1074   | 217    | 184       | 1014    | 236   | 174       | 947    | 257    | 162       | 878    | 282     | 150       | 805    | 311  | 138       | 55        |
| NI CCN       | 7    | 1172 | 203  | 201       | 1112   | 219    | 191       | 1050    | 238   | 180       | 982    | 259    | 168       | 913    | 285     | 156       | 839    | 313  | 144       | 55        |
| N - SSN      | 8    | 1210 | 206  | 207       | 1150   | 222    | 197       | 1086    | 240   | 186       | 1022   | 261    | 175       | 945    | 287     | 162       | 871    | 315  | 149       | 55        |
|              | 9    | 1248 | 209  | 214       | 1187   | 224    | 204       | 1122    | 243   | 192       | 1052   | 265    | 180       | 981    | 289     | 168       | 904    | 318  | 155       | 55        |
|              | 10   | 1291 | 211  | 221       | 1224   | 227    | 210       | 1157    | 245   | 198       | 1087   | 267    | 186       | 1019   | 291     | 175       | 935    | 321  | 160       | 55        |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidissem | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | 'eau aı | ı cond | lenseu    | r - Ou | tlet w | ater co   | ondens | ser tei | nperat    | ture (° | <b>C</b> ) |           |
|--------------|------|------|------|-----------|--------|--------|-----------|---------|--------|-----------|--------|--------|-----------|--------|---------|-----------|---------|------------|-----------|
| Cooling      |      |      | 27   |           |        | 30     |           |         | 35     |           |        | 40     |           |        | 45      |           |         | 50         |           |
|              |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf      | Pa     | Fw        | Pf     | Pa     | Fw        | Pf     | Pa      | Fw        | Pf      | Pa         | Fw        |
| tu           | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)    | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)    | (kW)       | $(m^3/h)$ |
|              | 5    | 1114 | 192  | 191       | 1082   | 201    | 185       | 1028    | 217    | 176       | 965    | 237    | 165       | 900    | 259     | 154       | 834     | 283        | 143       |
|              | 6    | 1155 | 195  | 198       | 1122   | 203    | 192       | 1065    | 220    | 182       | 1003   | 239    | 172       | 937    | 261     | 161       | 869     | 286        | 149       |
| NI CCNI      | 7    | 1195 | 197  | 205       | 1161   | 206    | 199       | 1103    | 222    | 189       | 1039   | 241    | 178       | 974    | 263     | 167       | 904     | 288        | 155       |
| N - SSN      | 8    | 1234 | 200  | 212       | 1200   | 209    | 206       | 1139    | 225    | 195       | 1076   | 243    | 184       | 1011   | 265     | 173       | 936     | 291        | 160       |
|              | 9    | 1276 | 203  | 219       | 1241   | 211    | 213       | 1175    | 227    | 202       | 1108   | 247    | 190       | 1041   | 268     | 179       | 969     | 292        | 166       |
|              | 10   | 1315 | 206  | 226       | 1277   | 214    | 219       | 1212    | 230    | 208       | 1145   | 249    | 196       | 1075   | 271     | 184       | 1007    | 295        | 173       |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5 \, ^{\circ}C$ 

*Tower water condenser*  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet ΔT levels, refer to the "ΔT correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.



### DONNÉES GÉNÉRALES - GENERAL DATA

| Compresseur Compressor                |                                        |         | N              | SSN                   |
|---------------------------------------|----------------------------------------|---------|----------------|-----------------------|
| Circuits frigorifiques                | Cooling circuits                       | N°      | 2              | 2                     |
| Compresseurs                          | Compressors                            | N°      | 2              | 2                     |
| Étages de puissance                   | Capacity control                       | %       | 25 ÷ 100 conti | nu c <i>ontinuous</i> |
| ESSER (1)                             | ESSER (1)                              | -       | 6,             | 42                    |
| IPLV (2)                              | IPLV <sup>(2)</sup>                    | -       | 6,             | 47                    |
| Alimentation électrique Electrica     | l power supply                         |         |                |                       |
| Puissance                             | Power                                  | V/Ph/Hz | 400 ± 10       | %/3/50                |
| Auxiliaires                           | Auxiliary                              | V/Ph/Hz | 24 - 230 ± 1   | 0 % / 1 / 50          |
| Évaporateur <i>Evaporator</i>         |                                        |         |                |                       |
| Débit minimum                         | Min flow rate                          | m³/h    | 86             | ,0                    |
| Débit maximum                         | Max flow rate                          | m³/h    | 27             | 78                    |
| Volume d'eau                          | Water volume                           | I       | 40             | 06                    |
| Condenseur eau de tour <i>Tower w</i> | vater condenser                        |         |                |                       |
| Quantité                              | Quantity                               | N°      | 2              | 2                     |
| Débit minimum (3)                     | Min condenser flow rate <sup>(3)</sup> | m³/h    | 56             | 5,0                   |
| Débit maximum (3)                     | Max condenser flow rate (3)            | m³/h    | 38             | 36                    |
| Volume d'eau                          | Condenser water volume                 | I       | 19             | 0,8                   |

| comacinocai | cuu | ac para | 0.0 | · · · · · · | comacinaci |   |
|-------------|-----|---------|-----|-------------|------------|---|
|             |     |         |     |             |            | - |

| Quantité                     | Quantity                    | N°   | 2     |
|------------------------------|-----------------------------|------|-------|
| Débit minimum <sup>(3)</sup> | Min condenser flow rate (3) | m³/h | 28,0  |
| Débit maximum (3)            | Max condenser flow rate (3) | m³/h | 161   |
| Volume d'eau                 | Condenser water volume      | 1    | 190,8 |

Dimensions et poids en service Dimensions and installed weight

| Largeur  | Width  | mm | 1200 | 1200 |
|----------|--------|----|------|------|
| Longueur | Length | mm | 4760 | 4910 |
| Hauteur  | Height | mm | 2250 | 2250 |
| Poids    | Weight | kg | 7141 | 7351 |

- (1) Calculé selon les conditions EECCAC ; Calculated according to EECCAC conditions;
- (2) Calculé selon le Standard ARI 550/590-2003 ; Calculated according to Standard ARI 550/590-2003;
- (3) Pour les modèles à deux circuits les débits min et max des condenseurs sont les débits totaux ; For twin circuit models the condenser min/max flows are the total value.

### ABSORPTIONS ÉLECTRIQUES - ELECTRICAL DATA

| FLI (kW) | FLA (A) | ICF (A) |
|----------|---------|---------|
| 435      | 705     | 1001    |

**FLI** = puissance maximum absorbée dans les conditions limite de fonctionnement, max power absorbed in the working limits condition; **FLA** = courant maximum absorbé dans les conditions limite de fonctionnement, max current absorbed in the working limits condition; **ICF** = courant de démarrage à la mise en marche du dernier compresseur dans les conditions limite de fonctionnement, start-up current at the start of the last compressor in the working limits condition.

### **NIVEAUX SONORES - SOUND LEVELS**

|     |      |          | Puissance  | Pression   |           |           |          |      |        |           |
|-----|------|----------|------------|------------|-----------|-----------|----------|------|--------|-----------|
|     | 63   | 125      | 250        | 500        | 1000      | 2000      | 4000     | 8000 | Power  | Pressure  |
|     |      | Niveau o | de puissar | nce sonore | e - Sound | power lev | el dB(A) |      | dB (A) | dB (A)10m |
| N   | 49,2 | 71,0     | 92,5       | 93,5       | 98,3      | 92,2      | 81,7     | 68,9 | 101    | 73,0      |
| SSN | 43,2 | 65,0     | 86,5       | 87,5       | 92,3      | 86,2      | 75,7     | 62,9 | 95,0   | 67,0      |

| Distance (1) |     |
|--------------|-----|
| Distance (1) |     |
| L (m)        | KdB |
| 1            | 15  |
| 3            | 10  |
| 5            | 6   |
| 10           | 0   |

Puissance sonore : déterminée sur la base de mesures effectuées conformément à la norme ISO 3744. Pression sonore à 10 m : valeur moyenne relevée en champ libre, sur une surface réfléchissante, à une distance de 10 m du côté le plus long de la machine, et à 1.6 m de hauteur par rapport à la base d'appui de l'unité. Valeurs avec tolérance ± 2 dB. Les niveaux sonores se réfèrent au fonctionnement de l'unité à pleine charge en conditions nominales. (1) Pour calculer le niveau de pression sonore à une distance différente, utiliser la formule : dB(A)L=dB(A)10m+Kdb.

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE TOUR - TOWER WATER**

| Refroidisseme | nt  |      | Te   | mpéra     | ture d | e sort | ie de l   | 'eau aı | ı cond | lenseu    | r - Ou | tlet w | ater c    | ondens | ser tei | nperat    | ure (° | C)   |           |        |
|---------------|-----|------|------|-----------|--------|--------|-----------|---------|--------|-----------|--------|--------|-----------|--------|---------|-----------|--------|------|-----------|--------|
| Cooling       |     |      | 30   |           |        | 35     |           |         | 40     |           |        | 45     |           |        | 50      |           |        | 55   |           | t max. |
|               |     | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf      | Pa     | Fw        | Pf     | Pa     | Fw        | Pf     | Pa      | Fw        | Pf     | Pa   | Fw        | (°C)   |
| tu (          | °C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)    | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)   | (kW) | $(m^3/h)$ |        |
|               | 5   | 1200 | 215  | 206       | 1141   | 234    | 195       | 1075    | 256    | 184       | 1009   | 281    | 173       | 941    | 312     | 161       | 871    | 347  | 149       | 55     |
|               | 6   | 1245 | 217  | 213       | 1182   | 236    | 203       | 1117    | 258    | 191       | 1049   | 283    | 180       | 979    | 314     | 168       | 907    | 349  | 155       | 55     |
| NI CCNI       | 7   | 1290 | 219  | 221       | 1225   | 238    | 210       | 1157    | 260    | 198       | 1086   | 285    | 186       | 1016   | 316     | 174       | 942    | 351  | 161       | 55     |
| N - SSN       | 8   | 1334 | 221  | 229       | 1267   | 240    | 217       | 1198    | 262    | 205       | 1130   | 287    | 194       | 1053   | 318     | 181       | 977    | 353  | 167       | 55     |
|               | 9   | 1378 | 223  | 236       | 1309   | 242    | 224       | 1237    | 264    | 212       | 1164   | 289    | 200       | 1090   | 319     | 187       | 1011   | 356  | 173       | 55     |
|               | 10  | 1425 | 225  | 244       | 1351   | 244    | 232       | 1278    | 266    | 219       | 1202   | 292    | 206       | 1131   | 321     | 194       | 1045   | 358  | 179       | 55     |

### **PERFORMANCES - PERFORMANCE DATA**

### **EAU DE PUITS - WELL WATER**

| Refroidissem | ent  |      | Te   | mpéra     | ture d | e sort | ie de l'  | eau au | ı cond | lenseu    | r - <i>Ou</i> | tlet w | ater co   | ondens | ser ter | nperat    | ure (° | <b>C</b> ) |           |
|--------------|------|------|------|-----------|--------|--------|-----------|--------|--------|-----------|---------------|--------|-----------|--------|---------|-----------|--------|------------|-----------|
| Cooling      |      | 27   |      | 30        |        |        | 35        |        |        | 40        |               | 45     |           |        | 50      |           |        |            |           |
|              |      | Pf   | Pa   | Fw        | Pf     | Pa     | Fw        | Pf     | Pa     | Fw        | Pf            | Pa     | Fw        | Pf     | Pa      | Fw        | Pf     | Pa         | Fw        |
| tu           | (°C) | (kW) | (kW) | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)   | (kW)   | $(m^3/h)$ | (kW)          | (kW)   | $(m^3/h)$ | (kW)   | (kW)    | $(m^3/h)$ | (kW)   | (kW)       | $(m^3/h)$ |
|              | 5    | 1227 | 208  | 210       | 1191   | 218    | 204       | 1132   | 237    | 194       | 1066          | 259    | 183       | 1001   | 285     | 171       | 932    | 316        | 160       |
|              | 6    | 1274 | 209  | 218       | 1237   | 219    | 212       | 1174   | 239    | 201       | 1108          | 261    | 190       | 1040   | 287     | 178       | 971    | 317        | 166       |
| NI CCNI      | 7    | 1317 | 212  | 226       | 1281   | 222    | 220       | 1215   | 241    | 208       | 1149          | 263    | 197       | 1079   | 289     | 185       | 1007   | 320        | 173       |
| N - SSN      | 8    | 1363 | 214  | 234       | 1324   | 224    | 227       | 1258   | 243    | 216       | 1189          | 265    | 204       | 1120   | 290     | 192       | 1043   | 322        | 179       |
|              | 9    | 1411 | 215  | 242       | 1367   | 226    | 234       | 1298   | 245    | 223       | 1228          | 267    | 211       | 1155   | 293     | 198       | 1079   | 323        | 185       |
|              | 10   | 1455 | 218  | 249       | 1416   | 227    | 243       | 1339   | 247    | 230       | 1267          | 269    | 217       | 1192   | 296     | 204       | 1120   | 325        | 192       |

tu: température eau sortie évaporateur

Pf: puissance frigorifique;

Pa: puissance absorbée par les compresseurs ;

Fw: débit d'eau.

(\*): température maximum au condenseur. Si la température au condenseur est supérieure à « t max » le refroidisseur ne se bloque pas mais le système « unloading » (délestage) de réduction par étages de puissance intervient.

Les valeurs nominales se réfèrent aux conditions suivantes :

 $\Delta T$  évaporateur = 5 °C

 $\Delta T$  condenseur tour = 5 °C

### $\Delta T$ condenseur puits = 15 °C

Pour déterminer les performances, avec une  $\Delta T$  entre l'entrée et la sortie de l'eau des échangeurs différente de la  $\Delta T$  nominale, utiliser les tableaux « Coefficients de correction  $\Delta T$  ».

L'interpolation des valeurs est admise mais pas leur extrapolation.

Pour le fonctionnement en pompe à chaleur, l'inversion de cycle est prévue sur le côté eau ; la puissance calorifique est déterminée par la formule suivante : Puissance calorifique = puissance frigorifique + puissance absorbée par les compresseurs.

Les valeurs surlignées en gris concernent un débit d'eau extérieur aux limites et ne représentent pas un point de fonctionnement admis. Ces valeurs ne sont indiquées que pour consentir l'interpolation des performances et éventuellement le calcul avec des delta T différents de 5 °C.

tu: evaporator outlet water temperature;

Pf: cooling capacity;

Pa: power absorbed by the compressors;

Fw: water flow rate.

(\*): When the condenser temperature is higher than the "t max" the chiller doesn't stop but the "unloading" system capacity control is activated. Nominal data is referred to the following conditions:

**Evaporator**  $\Delta T = 5$  °C

Tower water condenser  $\Delta T = 5$  °C

Well water condenser = 15 °C

To calculate performances at diferring water inlet/outlet  $\Delta T$  levels, refer to the " $\Delta T$  correction factors" table.

Interpolation is allowed, extrapolation is not permitted.

When operating in heat pump mode, cycle inversion is foreseen on the water side; the termal load can be calculated using the following formula: Heating capacity = Cooling capacity + absorbed power.

### LIMITES DE FONCTIONNEMENT - COEFFICIENTS DE CORRECTION - SÉLECTIONS SOUPAPES WORKING LIMITS - CORRECTION FACTORS - VALVE SELECTION

### LIMITES DE FONCTIONNEMENT - WORKING LIMITS

| Min    | Max                                                                        |
|--------|----------------------------------------------------------------------------|
|        |                                                                            |
| -10    | 43                                                                         |
|        |                                                                            |
| 3 (2)  | 25                                                                         |
| 0 (2)  | 20                                                                         |
| 3 (3)  | 8(3)                                                                       |
|        |                                                                            |
| 23 (4) | 50                                                                         |
| 27     | 55                                                                         |
| 4 (3)  | 7 (3)                                                                      |
|        |                                                                            |
| 12 (4) | 45                                                                         |
| 22     | 55                                                                         |
| 10 (3) | 20 (3)                                                                     |
|        |                                                                            |
| 0      | 10                                                                         |
| 0      | 10                                                                         |
|        | 3 (2)<br>0 (2)<br>3 (3)<br>23 (4)<br>27<br>4 (3)<br>12 (4)<br>22<br>10 (3) |

Toutes les valeurs se réfèrent au fonctionnement de l'unité à pleine charge. All values are referred to operation of the unit at full load.

- (1) Pour les utilisations en dessous de 0 °C il faut ajouter une quantité appropriée de solution antigel. For external air temperature lower than 0 °C you must add a suitable quantity of antifreeze solution.
- (2) Pour des températures de l'eau à la sortie inférieures à 5 °C, il faut ajouter une quantité appropriée de solution antigel ; pour des températures inférieures à la limite indiquée, contacter nos bureaux commerciaux. For water outlet temperatures lower than 5 °C you must add a suitable quantity of antifreeze solution; for temperatures below the specified limit consult our sales department.
- (3) Respecter les valeurs de débit minimum et maximum des échangeurs. Comply with the exchanger minimum and maximum flow rate values.
- (4) Se réfère au fonctionnement sans vanne pressostatique. Referred to operation without a pressure control valve.

### SOLUTIONS D'EAU ET GLYCOL ÉTHYLÈNE - SOLUTIONS OF WATER AND ETHYLENE GLYCOL

|                                                                                                                          | Glyc | col éthylène | en poids % | Ethylene g | glycol by w | eight |
|--------------------------------------------------------------------------------------------------------------------------|------|--------------|------------|------------|-------------|-------|
|                                                                                                                          | 0    | 10           | 20         | 30         | 40          | 50    |
| Facteur de correction puissance frigorifique/puissance thermique Cooling capacity/Heating capacity correction factor  K1 | 1    | 0,993        | 0,984      | 0,973      | 0,960       | 0,945 |
| Facteur de correction puissance absorbée Absorbed power correction factor  Kp1                                           | 1    | 0,998        | 0,996      | 0,994      | 0,991       | 0,987 |
| Facteur de correction pertes de charge Pressure drop correction factor  Kdp1                                             | 1    | 1,021        | 1,043      | 1,066      | 1,091       | 1,117 |
| Coefficient de correction débit eau (1) Water flow correction factor (1)  Kewei                                          | 1    | 1,124        | 1,257      | 1,401      | 1,557       | 1,725 |

Multiplier les performances de la machine par les coefficients de correction indiqués sur le tableau. (ex.  $Pf_{(new)} = Pf \times K1$ ); multiply the unit performance by the correction factors given in the table. (e.g.  $Pf_{(new)} = Pf \times K1$ ).

(1) K<sub>FWE1</sub> = coefficient de correction (correspondant à la puissance frigorifique/puissance thermique corrigée avec K1) pour obtenir le débit d'eau avec une variation thermique de 5 °C; correction factor (referred to the cooling capacity/heating capacity corrected by K1) to obtain the water flow with a ΔT of 5 °C.

### **FACTEURS D'ENCRASSEMENT - FOULING FACTORS**

| THE LEGIS BETTER BELLEVIET TO BE THE TOTAL                                                                                       |           |                                                                                                                                  |          |          |          |          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|--|--|--|
|                                                                                                                                  |           | Facteur d'encrassement échangeur de chaleur eau/réfrigérant (m² °C/W)  Water refrigerant heat exchanger fouling factor (m² °C/W) |          |          |          |          |  |  |  |
|                                                                                                                                  |           | 0                                                                                                                                | 0,000043 | 0,000086 | 0,000172 | 0,000344 |  |  |  |
| Facteur d'encrassement évaporateur Evaporator fouling factors                                                                    |           |                                                                                                                                  |          |          |          |          |  |  |  |
| Facteur de correction puissance frigorifique condenseur eau de tour<br>Cooling capacity correction factor tower water condenser  | k2        | 1,014                                                                                                                            | 1,00     | 0,986    | 0,960    | 0,915    |  |  |  |
| Facteur de correction puissance absorbée condenseur eau de tour<br>Absorbed power correction factor tower water condenser        | kp2       | 1,003                                                                                                                            | 1,00     | 0,997    | 0,991    | 0,981    |  |  |  |
| Facteur d'encrassement condenseur eau de tour Tower water condenser for                                                          | uling fac | ctors                                                                                                                            |          |          |          |          |  |  |  |
| Facteur de correction puissance frigorifique condenseur eau de tour<br>Cooling capacity correction factor tower water condenser  | k3        | 1,004                                                                                                                            | 1,00     | 0,996    | 0,988    | 0,972    |  |  |  |
| Facteur de correction puissance absorbée condenseur eau de tour<br>Absorbed power correction factor tower water condenser        | kp3       | 0,994                                                                                                                            | 1,00     | 1,006    | 1,019    | 1,045    |  |  |  |
| Facteur d'encrassement condenseur eau de puits Well water condenser fou                                                          | ıling fac | tors                                                                                                                             |          |          |          |          |  |  |  |
| Facteur de correction puissance frigorifique condenseur eau de puits<br>Cooling capacity correction factor tower water condenser | k4        | 1,004                                                                                                                            | 1,00     | 0,997    | 0,990    | 0,975    |  |  |  |
| Facteur de correction puissance absorbée condenseur eau de puits<br>Absorbed power correction factor tower water condenser       | kp4       | 0,994                                                                                                                            | 1,00     | 1,006    | 1,018    | 1,043    |  |  |  |

Pour évaluer l'effet d'encrassement de l'échangeur de chaleur eau/réfrigérant, multiplier le rendement frigorifique Pf par k2 ou k3 et la puissance absorbée Pa par k2 ou k3 (ex.  $Pf_{(new)} = Pf \times k2$  o k3,  $Pa_{(new)} = Pa \times kp2$  o kp3); to determine the effect of fouling on the water/refrigerant heat exchanger, multiply the cooling capacity Pf by k2 o k3 and the absorbed power Pa by kp2 o kp3. (e.g.  $Pf_{(new)} = Pf \times k2$  o k3,  $Pa_{(new)} = Pa \times kp2$  o kp3).



### COEFFICIENTS DE CORRECTION $\Delta T$ - CORRECTION FACTORS $\Delta T$

**Evaporator Evaporator** 

| 2 uporator                                                                                                       |       |       | Δ    | .T    |       |       |
|------------------------------------------------------------------------------------------------------------------|-------|-------|------|-------|-------|-------|
|                                                                                                                  | 3     | 4     | 5    | 6     | 7     | 8     |
| Facteur de correction puissance frigorifique/puissance thermique  Cooling/heating capacity correction factor  k4 | 0,981 | 0,991 | 1,00 | 1,009 | 1,018 | 1,027 |
| Facteur de correction puissance absorbée Absorbed power correction factor kp4                                    | 0,996 | 0,998 | 1,00 | 1,002 | 1,004 | 1,006 |

Condenseur eau de tour Condensator tower water

|                                                                                                                |     |       |      | ΔΤ    |       |       |
|----------------------------------------------------------------------------------------------------------------|-----|-------|------|-------|-------|-------|
|                                                                                                                |     | 4     | 5    | 6     | 7     | 8     |
| Facteur de correction puissance frigorifique/puissance thermique<br>Cooling/heating capacity correction factor | k4  | 1,009 | 1,00 | 0,990 | 0,980 | 0,970 |
| Facteur de correction puissance absorbée<br>Absorbed power correction factor                                   | kp4 | 0,985 | 1,00 | 1,016 | 1,032 | 1,049 |

Condenseur eau de puits Condensator well water

|                                                                                                                 |       |       | ΔΤ   |       |       |
|-----------------------------------------------------------------------------------------------------------------|-------|-------|------|-------|-------|
|                                                                                                                 | 10    | 12    | 15   | 17    | 20    |
| Facteur de correction puissance frigorifique/puissance thermique k4  Cooling/heating capacity correction factor | 1,048 | 1,029 | 1,00 | 0,980 | 0,949 |
| Facteur de correction puissance absorbée Absorbed power correction factor kp4                                   | 0,926 | 0,954 | 1,00 | 1,033 | 1,085 |

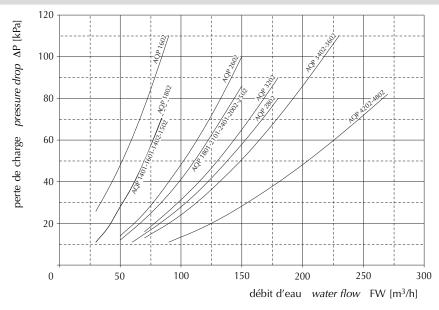
Multiplier les performances de la machine par les coefficients de correction indiqués sur le tableau (ex.  $Pf_{(new)} = Pf \times k4$ ,  $Pa_{(new)} = Pa \times k4$ ); multiply the unit performance by the correction factors given in table (e.g.  $Pf_{(new)} = Pf \times k4$ ,  $Pa_{(new)} = Pa \times k4$ ). Le nouveau débit d'eau à travers l'évaporateur est calculé à l'aide du rapport suivant  $Fw (m^3/h) = Pf_{(new)} (kW) \times 0.86 / \Delta T$  où  $\Delta t$  est la différence de température à travers l'évaporateur (°C); the new water flow to the evaporator is calculated by means of the following equation:  $Fw (m^3/h) = Pf_{(new)} (kW) \times 0.86 / \Delta T$  where  $\Delta T$  is the  $\Delta T$  of the water through the evaporator (°C).

### TABLEAUX DE SÉLECTION POUR VANNES PRESSOSTATIQUES ET VANNES MODULANTES SELECTION TABLES FOR PRESSURE CONTROL VALVES AND MODULATING VALVES

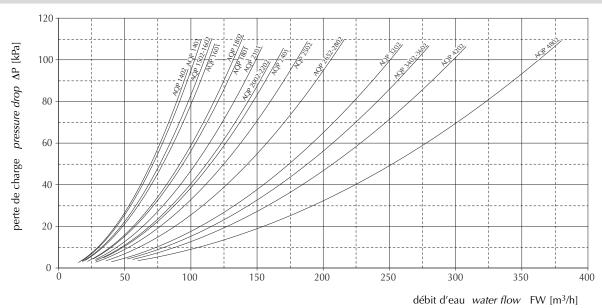
Vannes pressostatiques
Pressure control valves

| Pressure control valves | Raccords    | kv   | Débit - Flow rate |      |  |
|-------------------------|-------------|------|-------------------|------|--|
|                         | Connections | kv   | min               | max  |  |
|                         | inch        | m³/h | m³/h              | m³/h |  |
| WVS 40                  | 1″1/2       | 21   | 13                | 19   |  |
| WVS 50                  | 2"          | 32   | 16                | 29   |  |
| WSS 65                  | 2″1/2       | 45   | 24                | 40   |  |
| WVS 80                  | 3"          | 80   | 40                | 72   |  |
| WVS 100                 | 4"          | 125  | 55                | 112  |  |

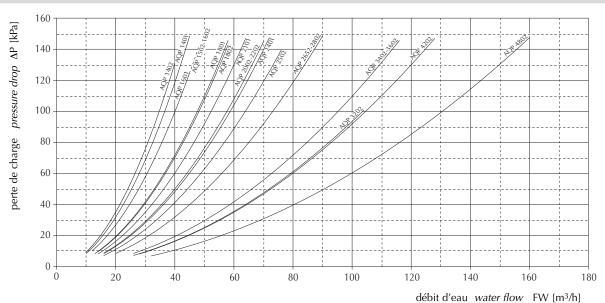
Vannes modulantes

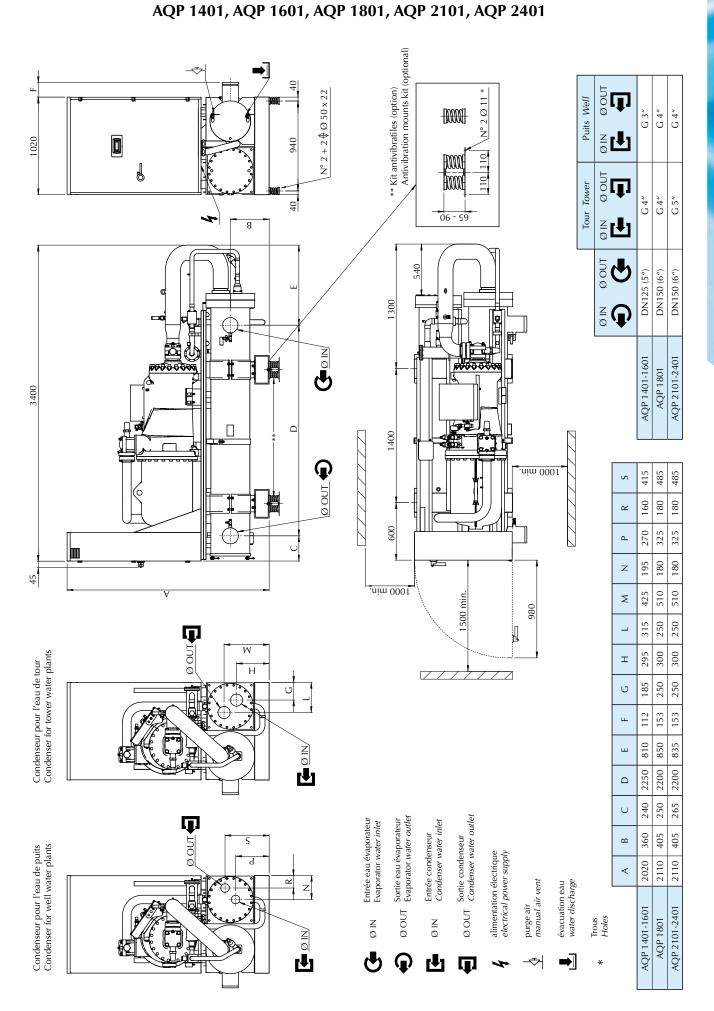

| Modulating valves | Raccords<br>Connections | kv<br>kv | Débit max<br>Max flow | Pression différentielle max.<br>Max. differential pressure |                      |
|-------------------|-------------------------|----------|-----------------------|------------------------------------------------------------|----------------------|
|                   |                         |          |                       | Réglage<br>Adjustment                                      | Fermeture<br>Closing |
|                   | inch                    | m³/h     | m³/h                  | bar                                                        | bar                  |
| VMB16 DN 40       | 1″1/2                   | 25       | 22                    | 2                                                          | 10                   |
| VMB16 DN 50       | 2"                      | 40       | 36                    | 2                                                          | 6,7                  |
| VMB16 DN 65       | 2″1/2                   | 63       | 56                    | 2                                                          | 4                    |
| VMB16 DN 80       | 3"                      | 100      | 89                    | 2                                                          | 2,4                  |
| VMB16 DN 100      | 4"                      | 130      | 116                   | 1,5                                                        | 1,5                  |

Les débits maximums sont calculés en admettant une perte de charge de 80 kPa avec vanne complètement ouverte. En cas d'utilisation de vannes modulantes, il faut vérifier les pressions différentielles maximums de réglage et de fermeture ; si ces limites ne sont pas respectées il faut contacter nos bureaux commerciaux pour une solution ad hoc.


The maximum flow rates are calculated allowing a pressure drop of 80 kPa with the valve fully open. When using modulating valves check the maximum control and closing differential pressure values; if these limits are not complied with, consult our sales department for an ad hoc selection.

AQUARIUS place

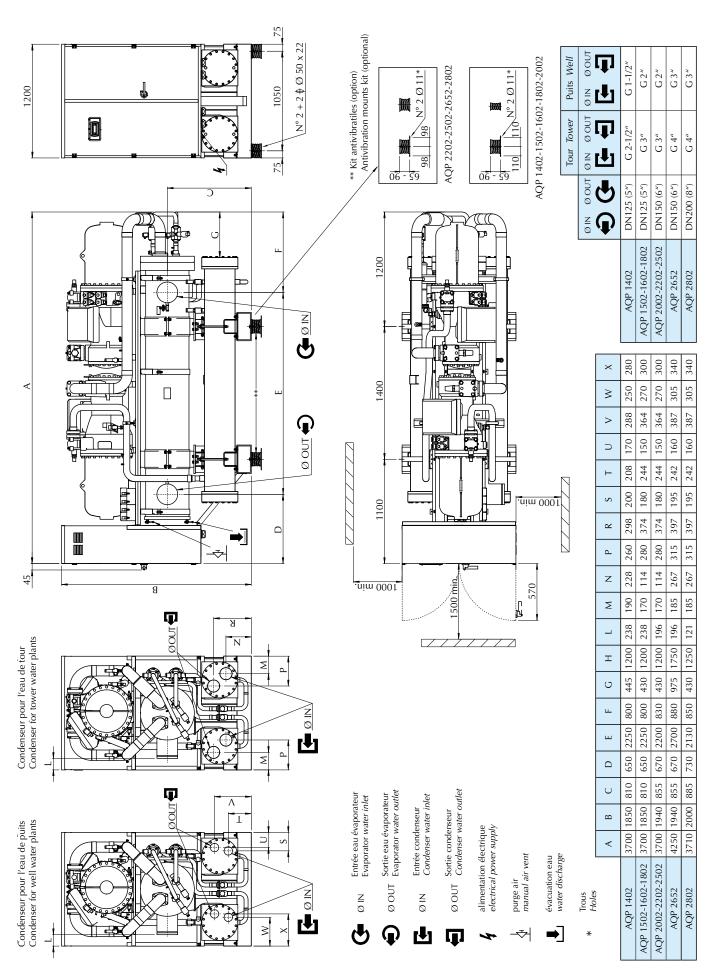

### PERTES DE CHARGE ÉVAPORATEURS - EVAPORATOR PRESSURE DROPS




### PERTES DE CHARGE CONDENSEURS EAU DE TOUR - CONDENSER PRESSURE DROPS TOWER WATER



### PERTES DE CHARGE CONDENSEURS EAU DE PUITS - CONDENSER PRESSURE DROPS WELL WATER










### AQP 1402, AQP 1502, AQP 1602, AQP 1802, AQP 2002, AQP 2202, AQP 2502, AQP 2652, AQP 2802



AQUARIUS plus

### Some every

### ort.

### AQP 3202, AQP 3402, AQP 3602, AQP 4202, AQP 4802







### **GUIDE D'INSTALLATION - INSTALLATION GUIDE**

L'installation des unités décrites dans le présent catalogue doit respecter les indications suivantes :

- a) Installer l'unité en position parfaitement horizontale pour garantir le retour correct de l'huile aux compresseurs.
- b) Respecter les distances de recul prévues.
- c) Placer la machine de façon à réduire au minimum les effets du bruit et des vibrations transmises à l'extérieur. En particulier, autant que possible, installer la machine loin de zones dans lesquelles le bruit du refroidisseur pourrait déranger, éviter d'installer le refroidisseur sous des fenêtres ou entre deux habitations. Les vibrations transmises par la machine doivent être réduites à l'aide de plots antivibratiles montés sous la machine, de joints flexibles sur les tuyauteries de l'eau et sur les conduits qui contiennent les câbles d'alimentation électrique.
- d) Effectuer le branchement électrique de la machine en consultant toujours les schémas électriques fournis avec celle-ci.
- e) Effectuer le raccordement hydraulique de la machine en prévoyant :
  - des joints antivibratiles ;
  - des vannes d'isolement ;
  - des purges dans les points les plus hauts de l'installation ;
  - des drainages dans les points les plus bas de l'installation ;
  - pompe et vase d'expansion;
  - filtre pour l'eau (40 mesh) à l'entrée de l'évaporateur et des condenseurs.
- f) Si le volume total du circuit hydraulique n'est pas suffisant, installer un ballon-tampon d'inertie en aval de l'échangeur côté utilisation; cela sert à réduire l'oscillation de la température de l'eau réfrigérée en améliorant en même temps le rendement énergétique de l'unité. Le tableau suivant indique le contenu minimum d'eau de l'installation pour des conditions nominales de fonctionnement, avec les programmations standards des paramètres de régulation électronique:

- Installation of the units described in this catalogue must be performed in observance of the following prescriptions:
- a) Install the unit in a perfectly horizontal position to ensure correct oil return to the compressors.
- b) Maintain the specified clearances around the unit.
- c) Position the unit in such a way as to minimise the effects of noise emissions and vibration transmitted to the external environment. As far as possible install the unit in a place that is well clear of shafts, windows, etc. in which the noise generated may constitute a source of disturbance. Vibration transmitted by the unit must be reduced by the use of antivibration devices mounted beneath the unit, flexible couplings on the water piping connections and on the trunking containing the electrical power feeding cables.
- d) Always make the electrical hook-up of the unit with reference to the wiring diagrams supplied with it.
- e) Make the hydraulic connections, installing the following:
  - flexible couplings;
  - shut-off valves;
  - bleed valves in the uppermost sections of the plant;
  - drain valves in the lowermost points of the plant;
  - pump and expansion tank;
  - water strainer (40 mesh) at the evaporator and condensers inlet.
- f) If the total volume of the hydraulic circuit is insufficient, install a water storage tank down-line from the user side exchanger; the storage tank serves to reduce the range of fluctuations of chilled water temperature while simultaneously optimising the energy efficiency of the unit. The following table shows the minimum water contents of the installation referred to nominal operating conditions, with the standard settings of the electronic controller parameters:

|                                         | AQP 1401 | AQP 1601 | AQP 1801 | AQP 2101 | AQP 2401 | AQP 1402 | AQP 1502 | AQP 1602 | AQP 1802 | AQP 2002 |
|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Volume minimum [m³]<br>Min. volume [m³] | 6,4      | 7,6      | 8,7      | 9,9      | 10,9     | 3,3      | 3,4      | 3,7      | 4,3      | 4,7      |
|                                         | AOP 2202 | AOP 2502 | AQP 2652 | AQP 2802 | AOD 2202 | AOD 2402 | 4OD 2602 | 4OD 4000 | 100 1000 |          |
|                                         | AQF 2202 | AQF 2502 | AQF 2052 | AQF 2002 | AQP 3202 | AQP 3402 | AQP 3602 | AQP 4202 | AQP 4802 |          |

- g) En cas de puissances frigorifiques demandées supérieures aux puissances maximums disponibles avec une seule machine, les refroidisseurs peuvent être raccordés hydrauliquement en parallèle, en ayant soin de choisir des unités si possible identiques pour ne pas créer de déséquilibres dans les débits d'eau.
- h) En cas de différences de température élevées du fluide à traiter, les refroidisseurs peuvent être raccordés hydrauliquement en série, chaque refroidisseur se chargeant de fournir une portion de la variation thermique de l'eau.
- i) En cas de nécessité de traiter des débits d'eau supérieurs au débit maximum consenti par le refroidisseur, il est conseillé de placer un by-pass entre l'entrée et la sortie du refroidisseur.
- En cas de nécessité de traiter des débits d'eau inférieurs au débit minimum consenti par le refroidisseur, il est conseillé de placer un by-pass entre la sortie et l'entrée du refroidisseur.
- m) Purger soigneusement l'installation hydraulique parce que même une petite quantité d'air peut faire geler l'évaporateur.
- n) On conseille de vider l'installation hydraulique durant les arrêts d'hiver, ou, en alternative, d'utiliser des mélanges antigel.

- g) In the case of cooling capacity requirements that are higher than the maximum capacities available with a single unit, the chillers can be connected in parallel on the hydraulic circuit, ideally selecting identical units in order to avoid situations of imbalance of water flow rates.
- h) In the case of high temperature differences of the fluid to be treated, the chillers can be connected in series on the hydraulic circuit and each chiller can provide a portion of the required water temperature gradient.
- i) If it is necessary to treat water flow rates that are higher than the maximum permissible flow rate associated with the unit, it is advisable to set up a by-pass between the chiller inlet and outlet.
- If it is necessary to treat water flow rates that are lower than the minimum permissible flow rate associated with the chiller, it is advisable to set up a by-pass between the chiller outlet and inlet.
- m) Carefully bleed all air from the hydraulic circuit because even a small amount of air in the circuit can cause the evaporator to freeze.
- n) Always drain the hydraulic circuit during winter shutdowns; alternatively, ensure the circuit is filled with a suitable antifreeze solution.

### DE L'ÉNERGIE POUR LE FUTUR

MTA a été créée il y a 25 ans avec un objectif clair : améliorer le rapport entre l'homme et deux ressources naturelles différentes, l'air et l'eau, en optimisant leur transformation en sources énergétiques. Crâce à ses investissements dans l'innovation, MTA est toujours en mesure de proposer des technologies à l'avant-garde et son équipe d'experts internationaux lui permet de satisfaire les exigences de ses clients de manière optimale.

### **ENERGY FOR THE FUTURE**

MTA was born over 25 years ago with a clear objective: improving mankind's relationship with their air and water, and optimising their transformation into energy sources. And as each application differs, so MTA offers a personalised energy solution perfectly aligned to each individual need. At MTA energy is our business, and improving your relationship with your energy is our aim.

### **DIVERSIFICATION STRATÉGIQUE**

En plus des installations de climatisation, MTA propose une série complète de produits destinés au marché du refroidissement des procédés industriels et une vaste gamme de solutions pour le traitement de l'air comprimé et des gaz. MTA est connue depuis toujours pour les innovations qu'elle a su introduire dans chacun de ces secteurs. La diversification stratégique adoptée offre donc aux clients des bénéfices uniques et inédits dans chaque domaine d'application.

### STRATEGIC DIVERSIFICATION

As well as Air Conditioning solutions, MTA offers products for Industrial Process Cooling, as well as Compressed Air & Gas Treatment solutions

MTA is renowned for the innovation it brings into each of these three sectors; in fact our strategic diversification offers our Customers unique benefits unseen in their individual fields.

### DANS LE MONDE ENTIER MAIS À PORTÉE DE MAIN

MTA dispose de bureaux de représentation dans 80 pays. 8 filiales commerciales MTA sur 4 continents. Ses collaborateurs et ses représentants possèdent des connaissances techniques spécifiques et bénéficient d'une formation continue. Les clients MTA savent qu'ils peuvent compter, dans la durée, sur un service après-vente attentif et méticuleux et sur des solutions énergétiques optimisées. MTA est toujours proche de ses clients, où qu'ils se trouvent.

### FAR REACHING BUT ALWAYS CLOSE BY

MTA is present in over 80 countries worldwide. 8 MTA Sales Companies cover 4 continents. Expert knowledge and an accurate attention to application consultancy and service support guarantees that our Customers can look forward to long term peace of mind and an optimized energy solution. We always remain close to our Customers, so wherever you may be, we are close by.

Dans l'optique de l'amélioration constante de ces produits, MTA se réserve le droit de modifier les données présentes dans ce catalogue sans obligation de préavis. Pour toute information complémentaire, s'adresser aux services commerciaux. Toute reproduction, même partielle, est interdite:

The data contained herein is not binding. With a view to continuous improvement, MTA reserves the right to make changes without prior notice. Please contact our sales office for further information. Reproduction in whole or in part is forbidden.

### Cooling, conditioning, purifying.



MTA est certifié ISO9001, un signe de donner complète satisfaction à ses clients.

MTA is ISO9001 certified, a sign of its commitment to complete customer satisfaction.



Les produits MTA sont en conformité avec toutes les directives de sécurité Européenne, reconnues par le symbole CE.

MTA products comply with European safety directives, as recognised by the CE symbol.



MTA participe au programme de certification Eurovent. Les gammes de produits certifiées sont listées sur www.eurovent-certification.com.

MTA partecipates in the Eurovent certification programme. Certified products are listed on www.eurovent-certification.com.

M.T.A. S.p.A.

www.mta-it.com

Viale Spagna, 8 - ZI - 35020 Tribano (PD) Italy Tel. +39 049 9588611 info@mta-it.com

Refroidissement industriel Industrial process cooling

Fax +39 049 9588661

Conditionnement de l'air

**Air conditioning** Fax +39 049 9588604

Traitement de l'air et de gaz comprimé Compressed air & gas treatment

Fax +39 049 9588612

Bureau de filiale de Milan *Milan branch office*Tel. +39 02 95738492

### MTA dans le monde entier

MTA est représentée en 80 pays environ. Pour toute information sur l'agence MTA la plus proche, veuillez contacter M.T.A. S.p.A.

### MTA worldwide

MTA is present in over 80 countries worldwide. For information concerning your nearest MTA representative please contact MTA.

MTA Australasia Tel. +61 3 9702 4348 www.mta-au.com

MTA Chine
Tel. +86 21 5417 1080
www.mta-it.com.cn

MTA France Tel. +33 04 7249 8989 www.mtafrance.fr

MTA Allemagne Tel. +49 2163 5796-0

**MTA Romanie** Tel. +40 368 457 004 www.mta-it.ro

MTA Espagne Tel. +34 938 281 790 www.novair-mta.com

MTA Angleterre Tel. +44 01702 217878 www.mta-uk.co.uk

**MTA USA** Tel. +1 716 693 8651 www.mta-it.com